Author
Listed:
- Shawn C Little
- Gašper Tkačik
- Thomas B Kneeland
- Eric F Wieschaus
- Thomas Gregor
Abstract
New quantitative data show that the Bicoid morphogen gradient is generated from a dynamic localized source and that protein gradient formation requires protein movement along the anterior-posterior axis.The Bicoid morphogen gradient directs the patterning of cell fates along the anterior-posterior axis of the syncytial Drosophila embryo and serves as a paradigm of morphogen-mediated patterning. The simplest models of gradient formation rely on constant protein synthesis and diffusion from anteriorly localized source mRNA, coupled with uniform protein degradation. However, currently such models cannot account for all known gradient characteristics. Recent work has proposed that bicoid mRNA spatial distribution is sufficient to produce the observed protein gradient, minimizing the role of protein transport. Here, we adapt a novel method of fluorescent in situ hybridization to quantify the global spatio-temporal dynamics of bicoid mRNA particles. We determine that >90% of all bicoid mRNA is continuously present within the anterior 20% of the embryo. bicoid mRNA distribution along the body axis remains nearly unchanged despite dynamic mRNA translocation from the embryo core to the cortex. To evaluate the impact of mRNA distribution on protein gradient dynamics, we provide detailed quantitative measurements of nuclear Bicoid levels during the formation of the protein gradient. We find that gradient establishment begins 45 minutes after fertilization and that the gradient requires about 50 minutes to reach peak levels. In numerical simulations of gradient formation, we find that incorporating the actual bicoid mRNA distribution yields a closer prediction of the observed protein dynamics compared to modeling protein production from a point source at the anterior pole. We conclude that the spatial distribution of bicoid mRNA contributes to, but cannot account for, protein gradient formation, and therefore that protein movement, either active or passive, is required for gradient formation.Author Summary: The Bicoid protein gradient plays a crucial role in determining the anterior body pattern of Drosophila embryos. This gradient is the classic example of morphogen-mediated patterning of a developing metazoan and serves as a major topic for mathematical modeling. Accurate modeling of the gradient requires a detailed account of the underlying bicoid mRNA distribution. The classic model holds that mRNA protein gradient arises via protein diffusion from mRNA localized at the anterior of the developing egg. In contrast, recent proposals suggest that an mRNA gradient generates the protein gradient without protein movement. In this study, we introduce a novel mRNA quantification method for Drosophila embryos, which allows us to visualize each individual mRNA particle accurately in whole embryos. We demonstrate that all but a few mRNA particles are confined to the anterior 20% of the egg, and consequently that the protein must move in order to establish a gradient. We further report that the mRNA distribution is highly dynamic during the time of protein synthesis. In numerical simulations, we show that incorporating realistic spatial locations of the individual source mRNA molecules throughout the developmental period is necessary to accurately model the experimentally observed protein gradient dynamics.
Suggested Citation
Shawn C Little & Gašper Tkačik & Thomas B Kneeland & Eric F Wieschaus & Thomas Gregor, 2011.
"The Formation of the Bicoid Morphogen Gradient Requires Protein Movement from Anteriorly Localized mRNA,"
PLOS Biology, Public Library of Science, vol. 9(3), pages 1-17, March.
Handle:
RePEc:plo:pbio00:1000596
DOI: 10.1371/journal.pbio.1000596
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:1000596. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.