IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/1002572.html
   My bibliography  Save this article

Relative Contributions of Specific Activity Histories and Spontaneous Processes to Size Remodeling of Glutamatergic Synapses

Author

Listed:
  • Roman Dvorkin
  • Noam E Ziv

Abstract

The idea that synaptic properties are defined by specific pre- and postsynaptic activity histories is one of the oldest and most influential tenets of contemporary neuroscience. Recent studies also indicate, however, that synaptic properties often change spontaneously, even in the absence of specific activity patterns or any activity whatsoever. What, then, are the relative contributions of activity history-dependent and activity history-independent processes to changes synapses undergo? To compare the relative contributions of these processes, we imaged, in spontaneously active networks of cortical neurons, glutamatergic synapses formed between the same axons and neurons or dendrites under the assumption that their similar activity histories should result in similar size changes over timescales of days. The size covariance of such commonly innervated (CI) synapses was then compared to that of synapses formed by different axons (non-CI synapses) that differed in their activity histories. We found that the size covariance of CI synapses was greater than that of non-CI synapses; yet overall size covariance of CI synapses was rather modest. Moreover, momentary and time-averaged sizes of CI synapses correlated rather poorly, in perfect agreement with published electron microscopy-based measurements of mouse cortex synapses. A conservative estimate suggested that ~40% of the observed size remodeling was attributable to specific activity histories, whereas ~10% and ~50% were attributable to cell-wide and spontaneous, synapse-autonomous processes, respectively. These findings demonstrate that histories of naturally occurring activity patterns can direct glutamatergic synapse remodeling but also suggest that the contributions of spontaneous, possibly stochastic, processes are at least as great.Contrary to expectations, specific activity histories account for less than half of the remodeling exhibited by individual glutamatergic synapses in spontaneously active networks of cortical neurons.Author Summary: The modification of synaptic connections by specific activity histories (a phenomenon known as synaptic plasticity) is widely believed to represent a major substrate of processes collectively referred to as learning and memory. Recent studies indicate, however, that synapses also change spontaneously, even in the absence of specific activity histories—or, for that matter, any activity whatsoever. This raises a fundamental question: how do changes directed by specific activity histories quantitatively compare to spontaneous changes in synaptic properties? Put differently—what is the “signal-to-noise ratio” of synaptic plasticity at individual synapses? To address this question we followed—over several days—pairs of synapses formed between the same neurons under the assumption that their common activity histories should drive similar changes in their sizes. Indeed, sizes of such synapses tended to change in a correlated manner; yet the extent of this correlation was surprisingly modest, accounting for less than half of the changes that such synapses exhibited. Moreover, sizes of synapses with apparently common activity histories tended to be quite different. Our findings thus indicate that the “signal-to-noise ratio” of synapse remodeling might be rather poor, on the order of 1:1 or less.

Suggested Citation

  • Roman Dvorkin & Noam E Ziv, 2016. "Relative Contributions of Specific Activity Histories and Spontaneous Processes to Size Remodeling of Glutamatergic Synapses," PLOS Biology, Public Library of Science, vol. 14(10), pages 1-33, October.
  • Handle: RePEc:plo:pbio00:1002572
    DOI: 10.1371/journal.pbio.1002572
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002572
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1002572&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.1002572?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anna Rubinski & Noam E Ziv, 2015. "Remodeling and Tenacity of Inhibitory Synapses: Relationships with Network Activity and Neighboring Excitatory Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-29, November.
    2. Alessio Attardo & James E. Fitzgerald & Mark J. Schnitzer, 2015. "Impermanence of dendritic spines in live adult CA1 hippocampus," Nature, Nature, vol. 523(7562), pages 592-596, July.
    3. Akiko Hayashi-Takagi & Sho Yagishita & Mayumi Nakamura & Fukutoshi Shirai & Yi I. Wu & Amanda L. Loshbaugh & Brian Kuhlman & Klaus M. Hahn & Haruo Kasai, 2015. "Labelling and optical erasure of synaptic memory traces in the motor cortex," Nature, Nature, vol. 525(7569), pages 333-338, September.
    4. Adiel Statman & Maya Kaufman & Amir Minerbi & Noam E Ziv & Naama Brenner, 2014. "Synaptic Size Dynamics as an Effectively Stochastic Process," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-17, October.
    5. Tsai-Wen Chen & Trevor J. Wardill & Yi Sun & Stefan R. Pulver & Sabine L. Renninger & Amy Baohan & Eric R. Schreiter & Rex A. Kerr & Michael B. Orger & Vivek Jayaraman & Loren L. Looger & Karel Svobod, 2013. "Ultrasensitive fluorescent proteins for imaging neuronal activity," Nature, Nature, vol. 499(7458), pages 295-300, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aseel Shomar & Lukas Geyrhofer & Noam E Ziv & Naama Brenner, 2017. "Cooperative stochastic binding and unbinding explain synaptic size dynamics and statistics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aseel Shomar & Lukas Geyrhofer & Noam E Ziv & Naama Brenner, 2017. "Cooperative stochastic binding and unbinding explain synaptic size dynamics and statistics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-24, July.
    2. Aniruddha Das & Sarah Holden & Julie Borovicka & Jacob Icardi & Abigail O’Niel & Ariel Chaklai & Davina Patel & Rushik Patel & Stefanie Kaech Petrie & Jacob Raber & Hod Dana, 2023. "Large-scale recording of neuronal activity in freely-moving mice at cellular resolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Johannes Friedrich & Pengcheng Zhou & Liam Paninski, 2017. "Fast online deconvolution of calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-26, March.
    4. Jen-Chun Hsiang & Ning Shen & Florentina Soto & Daniel Kerschensteiner, 2024. "Distributed feature representations of natural stimuli across parallel retinal pathways," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    5. Francesco Paolo Ulloa Severino & Oluwadamilola O. Lawal & Kristina Sakers & Shiyi Wang & Namsoo Kim & Alexander David Friedman & Sarah Anne Johnson & Chaichontat Sriworarat & Ryan H. Hughes & Scott H., 2023. "Training-induced circuit-specific excitatory synaptogenesis in mice is required for effort control," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    6. Omer Mano & Damon A Clark, 2017. "Graphics Processing Unit-Accelerated Code for Computing Second-Order Wiener Kernels and Spike-Triggered Covariance," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-11, January.
    7. Rodrigo Ordoñez Sierra & Lizeth Katherine Pedraza & Lívia Barcsai & Andrea Pejin & Qun Li & Gábor Kozák & Yuichi Takeuchi & Anett J. Nagy & Magor L. Lőrincz & Orrin Devinsky & György Buzsáki & Antal B, 2023. "Closed-loop brain stimulation augments fear extinction in male rats," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Che-Hang Yu & Jeffrey N. Stirman & Yiyi Yu & Riichiro Hira & Spencer L. Smith, 2021. "Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. Zengpeng Han & Nengsong Luo & Wenyu Ma & Xiaodong Liu & Yuxiang Cai & Jiaxin Kou & Jie Wang & Lei Li & Siqi Peng & Zihong Xu & Wen Zhang & Yuxiang Qiu & Yang Wu & Chaohui Ye & Kunzhang Lin & Fuqiang X, 2023. "AAV11 enables efficient retrograde targeting of projection neurons and enhances astrocyte-directed transduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Philipp Berens & Jeremy Freeman & Thomas Deneux & Nikolay Chenkov & Thomas McColgan & Artur Speiser & Jakob H Macke & Srinivas C Turaga & Patrick Mineault & Peter Rupprecht & Stephan Gerhard & Rainer , 2018. "Community-based benchmarking improves spike rate inference from two-photon calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-13, May.
    11. Jilt Sebastian & Mriganka Sur & Hema A Murthy & Mathew Magimai-Doss, 2021. "Signal-to-signal neural networks for improved spike estimation from calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-19, March.
    12. Alexander Rivkind & Hallel Schreier & Naama Brenner & Omri Barak, 2020. "Scale free topology as an effective feedback system," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-24, May.
    13. Richard F Betzel & Katherine C Wood & Christopher Angeloni & Maria Neimark Geffen & Danielle S Bassett, 2019. "Stability of spontaneous, correlated activity in mouse auditory cortex," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-25, December.
    14. Jina Yun & Simon Hansen & Otto Morris & David T. Madden & Clare Peters Libeu & Arjun J. Kumar & Cameron Wehrfritz & Aaron H. Nile & Yingnan Zhang & Lijuan Zhou & Yuxin Liang & Zora Modrusan & Michelle, 2023. "Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Christopher M. Kim & Arseny Finkelstein & Carson C. Chow & Karel Svoboda & Ran Darshan, 2023. "Distributing task-related neural activity across a cortical network through task-independent connections," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    16. Guillaume Viejo & Thomas Cortier & Adrien Peyrache, 2018. "Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-25, March.
    17. Liang Shi & Xiaoxi Fu & Shen Gui & Tong Wan & Junjie Zhuo & Jinling Lu & Pengcheng Li, 2024. "Global spatiotemporal synchronizing structures of spontaneous neural activities in different cell types," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Yuanlong Zhang & Xiaofei Song & Jiachen Xie & Jing Hu & Jiawei Chen & Xiang Li & Haiyu Zhang & Qiqun Zhou & Lekang Yuan & Chui Kong & Yibing Shen & Jiamin Wu & Lu Fang & Qionghai Dai, 2023. "Large depth-of-field ultra-compact microscope by progressive optimization and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Jeffrey P Nguyen & Ashley N Linder & George S Plummer & Joshua W Shaevitz & Andrew M Leifer, 2017. "Automatically tracking neurons in a moving and deforming brain," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-19, May.
    20. Franziska Bierbuesse & Anaïs C. Bourges & Vincent Gielen & Viola Mönkemöller & Wim Vandenberg & Yi Shen & Johan Hofkens & Pieter Vanden Berghe & Robert E. Campbell & Benjamien Moeyaert & Peter Dedecke, 2022. "Absolute measurement of cellular activities using photochromic single-fluorophore biosensors and intermittent quantification," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:1002572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.