IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007921.html
   My bibliography  Save this article

Signal-to-signal neural networks for improved spike estimation from calcium imaging data

Author

Listed:
  • Jilt Sebastian
  • Mriganka Sur
  • Hema A Murthy
  • Mathew Magimai-Doss

Abstract

Spiking information of individual neurons is essential for functional and behavioral analysis in neuroscience research. Calcium imaging techniques are generally employed to obtain activities of neuronal populations. However, these techniques result in slowly-varying fluorescence signals with low temporal resolution. Estimating the temporal positions of the neuronal action potentials from these signals is a challenging problem. In the literature, several generative model-based and data-driven algorithms have been studied with varied levels of success. This article proposes a neural network-based signal-to-signal conversion approach, where it takes as input raw-fluorescence signal and learns to estimate the spike information in an end-to-end fashion. Theoretically, the proposed approach formulates the spike estimation as a single channel source separation problem with unknown mixing conditions. The source corresponding to the action potentials at a lower resolution is estimated at the output. Experimental studies on the spikefinder challenge dataset show that the proposed signal-to-signal conversion approach significantly outperforms state-of-the-art-methods in terms of Pearson’s correlation coefficient, Spearman’s rank correlation coefficient and yields comparable performance for the area under the receiver operating characteristics measure. We also show that the resulting system: (a) has low complexity with respect to existing supervised approaches and is reproducible; (b) is layer-wise interpretable, and (c) has the capability to generalize across different calcium indicators.Author summary: Information processing by a population of neurons is studied using two-photon calcium imaging techniques. A neuronal spike results in an increased intracellular calcium concentration. Fluorescent calcium indicators change their brightness upon a change in the calcium concentration, and this change is captured in the imaging technique. The task of estimating the actual spike positions from the brightness variations is formally referred to as spike estimation. Several signal processing and machine learning-based algorithms have been proposed in the past to solve this problem. However, the task is still far from being solved. Here we present a novel neural network-based data-driven algorithm for spike estimation. Our method takes the fluorescence recording as the input and synthesizes the spike information signal, which is well-correlated with the actual spike positions. Our method outperforms state-of-the-art methods on a standard evaluation framework. We further analyze different components of the model and discuss its benefits.

Suggested Citation

  • Jilt Sebastian & Mriganka Sur & Hema A Murthy & Mathew Magimai-Doss, 2021. "Signal-to-signal neural networks for improved spike estimation from calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-19, March.
  • Handle: RePEc:plo:pcbi00:1007921
    DOI: 10.1371/journal.pcbi.1007921
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007921
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007921&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tsai-Wen Chen & Trevor J. Wardill & Yi Sun & Stefan R. Pulver & Sabine L. Renninger & Amy Baohan & Eric R. Schreiter & Rex A. Kerr & Michael B. Orger & Vivek Jayaraman & Loren L. Looger & Karel Svobod, 2013. "Ultrasensitive fluorescent proteins for imaging neuronal activity," Nature, Nature, vol. 499(7458), pages 295-300, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aniruddha Das & Sarah Holden & Julie Borovicka & Jacob Icardi & Abigail O’Niel & Ariel Chaklai & Davina Patel & Rushik Patel & Stefanie Kaech Petrie & Jacob Raber & Hod Dana, 2023. "Large-scale recording of neuronal activity in freely-moving mice at cellular resolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Johannes Friedrich & Pengcheng Zhou & Liam Paninski, 2017. "Fast online deconvolution of calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-26, March.
    3. Jen-Chun Hsiang & Ning Shen & Florentina Soto & Daniel Kerschensteiner, 2024. "Distributed feature representations of natural stimuli across parallel retinal pathways," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Omer Mano & Damon A Clark, 2017. "Graphics Processing Unit-Accelerated Code for Computing Second-Order Wiener Kernels and Spike-Triggered Covariance," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-11, January.
    5. Che-Hang Yu & Jeffrey N. Stirman & Yiyi Yu & Riichiro Hira & Spencer L. Smith, 2021. "Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Zengpeng Han & Nengsong Luo & Wenyu Ma & Xiaodong Liu & Yuxiang Cai & Jiaxin Kou & Jie Wang & Lei Li & Siqi Peng & Zihong Xu & Wen Zhang & Yuxiang Qiu & Yang Wu & Chaohui Ye & Kunzhang Lin & Fuqiang X, 2023. "AAV11 enables efficient retrograde targeting of projection neurons and enhances astrocyte-directed transduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Philipp Berens & Jeremy Freeman & Thomas Deneux & Nikolay Chenkov & Thomas McColgan & Artur Speiser & Jakob H Macke & Srinivas C Turaga & Patrick Mineault & Peter Rupprecht & Stephan Gerhard & Rainer , 2018. "Community-based benchmarking improves spike rate inference from two-photon calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-13, May.
    8. Richard F Betzel & Katherine C Wood & Christopher Angeloni & Maria Neimark Geffen & Danielle S Bassett, 2019. "Stability of spontaneous, correlated activity in mouse auditory cortex," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-25, December.
    9. Jina Yun & Simon Hansen & Otto Morris & David T. Madden & Clare Peters Libeu & Arjun J. Kumar & Cameron Wehrfritz & Aaron H. Nile & Yingnan Zhang & Lijuan Zhou & Yuxin Liang & Zora Modrusan & Michelle, 2023. "Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Guillaume Viejo & Thomas Cortier & Adrien Peyrache, 2018. "Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-25, March.
    11. Liang Shi & Xiaoxi Fu & Shen Gui & Tong Wan & Junjie Zhuo & Jinling Lu & Pengcheng Li, 2024. "Global spatiotemporal synchronizing structures of spontaneous neural activities in different cell types," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Yuanlong Zhang & Xiaofei Song & Jiachen Xie & Jing Hu & Jiawei Chen & Xiang Li & Haiyu Zhang & Qiqun Zhou & Lekang Yuan & Chui Kong & Yibing Shen & Jiamin Wu & Lu Fang & Qionghai Dai, 2023. "Large depth-of-field ultra-compact microscope by progressive optimization and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Jeffrey P Nguyen & Ashley N Linder & George S Plummer & Joshua W Shaevitz & Andrew M Leifer, 2017. "Automatically tracking neurons in a moving and deforming brain," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-19, May.
    14. Franziska Bierbuesse & Anaïs C. Bourges & Vincent Gielen & Viola Mönkemöller & Wim Vandenberg & Yi Shen & Johan Hofkens & Pieter Vanden Berghe & Robert E. Campbell & Benjamien Moeyaert & Peter Dedecke, 2022. "Absolute measurement of cellular activities using photochromic single-fluorophore biosensors and intermittent quantification," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Johannes Friedrich & Weijian Yang & Daniel Soudry & Yu Mu & Misha B Ahrens & Rafael Yuste & Darcy S Peterka & Liam Paninski, 2017. "Multi-scale approaches for high-speed imaging and analysis of large neural populations," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-24, August.
    16. Jimin Wu & Yuzhi Chen & Ashok Veeraraghavan & Eyal Seidemann & Jacob T. Robinson, 2024. "Mesoscopic calcium imaging in a head-unrestrained male non-human primate using a lensless microscope," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Sophie Aimon & Takeo Katsuki & Tongqiu Jia & Logan Grosenick & Michael Broxton & Karl Deisseroth & Terrence J Sejnowski & Ralph J Greenspan, 2019. "Fast near-whole–brain imaging in adult Drosophila during responses to stimuli and behavior," PLOS Biology, Public Library of Science, vol. 17(2), pages 1-31, February.
    18. Hyung Chul Lee & Nidia M. M. Oliveira & Cato Hastings & Peter Baillie-Benson & Adam A. Moverley & Hui-Chun Lu & Yi Zheng & Elise L. Wilby & Timothy T. Weil & Karen M. Page & Jianping Fu & Naomi Moris , 2024. "Regulation of long-range BMP gradients and embryonic polarity by propagation of local calcium-firing activity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Roman Dvorkin & Noam E Ziv, 2016. "Relative Contributions of Specific Activity Histories and Spontaneous Processes to Size Remodeling of Glutamatergic Synapses," PLOS Biology, Public Library of Science, vol. 14(10), pages 1-33, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.