IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0169842.html
   My bibliography  Save this article

Graphics Processing Unit-Accelerated Code for Computing Second-Order Wiener Kernels and Spike-Triggered Covariance

Author

Listed:
  • Omer Mano
  • Damon A Clark

Abstract

Sensory neuroscience seeks to understand and predict how sensory neurons respond to stimuli. Nonlinear components of neural responses are frequently characterized by the second-order Wiener kernel and the closely-related spike-triggered covariance (STC). Recent advances in data acquisition have made it increasingly common and computationally intensive to compute second-order Wiener kernels/STC matrices. In order to speed up this sort of analysis, we developed a graphics processing unit (GPU)-accelerated module that computes the second-order Wiener kernel of a system’s response to a stimulus. The generated kernel can be easily transformed for use in standard STC analyses. Our code speeds up such analyses by factors of over 100 relative to current methods that utilize central processing units (CPUs). It works on any modern GPU and may be integrated into many data analysis workflows. This module accelerates data analysis so that more time can be spent exploring parameter space and interpreting data.

Suggested Citation

  • Omer Mano & Damon A Clark, 2017. "Graphics Processing Unit-Accelerated Code for Computing Second-Order Wiener Kernels and Spike-Triggered Covariance," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-11, January.
  • Handle: RePEc:plo:pone00:0169842
    DOI: 10.1371/journal.pone.0169842
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169842
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0169842&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0169842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jian K Liu & Tim Gollisch, 2015. "Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-30, July.
    2. Timm Lochmann & Timothy J Blanche & Daniel A Butts, 2013. "Construction of Direction Selectivity through Local Energy Computations in Primary Visual Cortex," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-13, March.
    3. Miguel Maravall & Rasmus S Petersen & Adrienne L Fairhall & Ehsan Arabzadeh & Mathew E Diamond, 2007. "Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex," PLOS Biology, Public Library of Science, vol. 5(2), pages 1-12, January.
    4. Xiaonan R. Sun & Aleksandra Badura & Diego A. Pacheco & Laura A. Lynch & Eve R. Schneider & Matthew P. Taylor & Ian B. Hogue & Lynn W. Enquist & Mala Murthy & Samuel S. -H. Wang, 2013. "Fast GCaMPs for improved tracking of neuronal activity," Nature Communications, Nature, vol. 4(1), pages 1-10, October.
    5. Donald R Cantrell & Jianhua Cang & John B Troy & Xiaorong Liu, 2010. "Non-Centered Spike-Triggered Covariance Analysis Reveals Neurotrophin-3 as a Developmental Regulator of Receptive Field Properties of ON-OFF Retinal Ganglion Cells," PLOS Computational Biology, Public Library of Science, vol. 6(10), pages 1-16, October.
    6. Tsai-Wen Chen & Trevor J. Wardill & Yi Sun & Stefan R. Pulver & Sabine L. Renninger & Amy Baohan & Eric R. Schreiter & Rex A. Kerr & Michael B. Orger & Vivek Jayaraman & Loren L. Looger & Karel Svobod, 2013. "Ultrasensitive fluorescent proteins for imaging neuronal activity," Nature, Nature, vol. 499(7458), pages 295-300, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian K Liu & Tim Gollisch, 2015. "Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-30, July.
    2. Jeffrey D Fitzgerald & Ryan J Rowekamp & Lawrence C Sincich & Tatyana O Sharpee, 2011. "Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-9, October.
    3. James M McFarland & Yuwei Cui & Daniel A Butts, 2013. "Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-18, July.
    4. Aniruddha Das & Sarah Holden & Julie Borovicka & Jacob Icardi & Abigail O’Niel & Ariel Chaklai & Davina Patel & Rushik Patel & Stefanie Kaech Petrie & Jacob Raber & Hod Dana, 2023. "Large-scale recording of neuronal activity in freely-moving mice at cellular resolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Johannes Friedrich & Pengcheng Zhou & Liam Paninski, 2017. "Fast online deconvolution of calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-26, March.
    6. Jen-Chun Hsiang & Ning Shen & Florentina Soto & Daniel Kerschensteiner, 2024. "Distributed feature representations of natural stimuli across parallel retinal pathways," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Gabriel D Puccini & Albert Compte & Miguel Maravall, 2006. "Stimulus Dependence of Barrel Cortex Directional Selectivity," PLOS ONE, Public Library of Science, vol. 1(1), pages 1-6, December.
    8. Jerome Carriot & Graham McAllister & Hamed Hooshangnejad & Isabelle Mackrous & Kathleen E. Cullen & Maurice J. Chacron, 2022. "Sensory adaptation mediates efficient and unambiguous encoding of natural stimuli by vestibular thalamocortical pathways," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Che-Hang Yu & Jeffrey N. Stirman & Yiyi Yu & Riichiro Hira & Spencer L. Smith, 2021. "Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Zengpeng Han & Nengsong Luo & Wenyu Ma & Xiaodong Liu & Yuxiang Cai & Jiaxin Kou & Jie Wang & Lei Li & Siqi Peng & Zihong Xu & Wen Zhang & Yuxiang Qiu & Yang Wu & Chaohui Ye & Kunzhang Lin & Fuqiang X, 2023. "AAV11 enables efficient retrograde targeting of projection neurons and enhances astrocyte-directed transduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Matthew F. Tang & Ehsan Kheradpezhouh & Conrad C. Y. Lee & J. Edwin Dickinson & Jason B. Mattingley & Ehsan Arabzadeh, 2023. "Expectation violations enhance neuronal encoding of sensory information in mouse primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Philipp Berens & Jeremy Freeman & Thomas Deneux & Nikolay Chenkov & Thomas McColgan & Artur Speiser & Jakob H Macke & Srinivas C Turaga & Patrick Mineault & Peter Rupprecht & Stephan Gerhard & Rainer , 2018. "Community-based benchmarking improves spike rate inference from two-photon calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-13, May.
    13. Jilt Sebastian & Mriganka Sur & Hema A Murthy & Mathew Magimai-Doss, 2021. "Signal-to-signal neural networks for improved spike estimation from calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-19, March.
    14. Sine Yaganoglu & Konstantinos Kalyviotis & Christina Vagena-Pantoula & Dörthe Jülich & Benjamin M. Gaub & Maaike Welling & Tatiana Lopes & Dariusz Lachowski & See Swee Tang & Armando Del Rio Hernandez, 2023. "Highly specific and non-invasive imaging of Piezo1-dependent activity across scales using GenEPi," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Richard F Betzel & Katherine C Wood & Christopher Angeloni & Maria Neimark Geffen & Danielle S Bassett, 2019. "Stability of spontaneous, correlated activity in mouse auditory cortex," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-25, December.
    16. Jina Yun & Simon Hansen & Otto Morris & David T. Madden & Clare Peters Libeu & Arjun J. Kumar & Cameron Wehrfritz & Aaron H. Nile & Yingnan Zhang & Lijuan Zhou & Yuxin Liang & Zora Modrusan & Michelle, 2023. "Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Guillaume Viejo & Thomas Cortier & Adrien Peyrache, 2018. "Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-25, March.
    18. Johnatan Aljadeff & Ronen Segev & Michael J Berry II & Tatyana O Sharpee, 2013. "Spike Triggered Covariance in Strongly Correlated Gaussian Stimuli," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-12, September.
    19. Liang Shi & Xiaoxi Fu & Shen Gui & Tong Wan & Junjie Zhuo & Jinling Lu & Pengcheng Li, 2024. "Global spatiotemporal synchronizing structures of spontaneous neural activities in different cell types," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Yuanlong Zhang & Xiaofei Song & Jiachen Xie & Jing Hu & Jiawei Chen & Xiang Li & Haiyu Zhang & Qiqun Zhou & Lekang Yuan & Chui Kong & Yibing Shen & Jiamin Wu & Lu Fang & Qionghai Dai, 2023. "Large depth-of-field ultra-compact microscope by progressive optimization and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0169842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.