IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v111y2024i2p625-641..html
   My bibliography  Save this article

A cross-validation-based statistical theory for point processes

Author

Listed:
  • Ottmar Cronie
  • Mehdi Moradi
  • Christophe A N Biscio

Abstract

Motivated by the general ability of cross-validation to reduce overfitting and mean square error, we develop a cross-validation-based statistical theory for general point processes. It is based on the combination of two novel concepts for general point processes: cross-validation and prediction errors. Our cross-validation approach uses thinning to split a point process/pattern into pairs of training and validation sets, while our prediction errors measure discrepancy between two point processes. The new statistical approach, which may be used to model different distributional characteristics, exploits the prediction errors to measure how well a given model predicts validation sets using associated training sets. Having indicated that our new framework generalizes many existing statistical approaches, we then establish different theoretical properties for it, including large sample properties. We further recognize that nonparametric intensity estimation is an instance of Papangelou conditional intensity estimation, which we exploit to apply our new statistical theory to kernel intensity estimation. Using independent thinning-based cross-validation, we numerically show that the new approach substantially outperforms the state-of-the-art in bandwidth selection. Finally, we carry out intensity estimation for a dataset in forestry and a dataset in neurology.

Suggested Citation

  • Ottmar Cronie & Mehdi Moradi & Christophe A N Biscio, 2024. "A cross-validation-based statistical theory for point processes," Biometrika, Biometrika Trust, vol. 111(2), pages 625-641.
  • Handle: RePEc:oup:biomet:v:111:y:2024:i:2:p:625-641.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asad041
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yongtao Guan & Abdollah Jalilian & Rasmus Waagepetersen, 2015. "Quasi-likelihood for spatial point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(3), pages 677-697, June.
    2. Jean-François Coeurjolly & Ege Rubak, 2013. "Fast Covariance Estimation for Innovations Computed from a Spatial Gibbs Point Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 669-684, December.
    3. Mohammad Ghorbani & Ottmar Cronie & Jorge Mateu & Jun Yu, 2021. "Functional marked point processes: a natural structure to unify spatio-temporal frameworks and to analyse dependent functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 529-568, September.
    4. Suman Rakshit & Tilman Davies & M. Mehdi Moradi & Greg McSwiggan & Gopalan Nair & Jorge Mateu & Adrian Baddeley, 2019. "Fast Kernel Smoothing of Point Patterns on a Large Network using Two‐dimensional Convolution," International Statistical Review, International Statistical Institute, vol. 87(3), pages 531-556, December.
    5. Greg McSwiggan & Adrian Baddeley & Gopalan Nair, 2017. "Kernel Density Estimation on a Linear Network," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 324-345, June.
    6. Mark Berman & T. Rolf Turner, 1992. "Approximating Point Process Likelihoods with Glim," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 31-38, March.
    7. Jean-François Coeurjolly & Jesper Møller & Rasmus Waagepetersen, 2017. "A Tutorial on Palm Distributions for Spatial Point Processes," International Statistical Review, International Statistical Institute, vol. 85(3), pages 404-420, December.
    8. O Cronie & M N M Van Lieshout, 2018. "A non-model-based approach to bandwidth selection for kernel estimators of spatial intensity functions," Biometrika, Biometrika Trust, vol. 105(2), pages 455-462.
    9. Cronie, Ottmar & Särkkä, Aila, 2011. "Some edge correction methods for marked spatio-temporal point process models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2209-2220, July.
    10. A. Baddeley & R. Turner & J. Møller & M. Hazelton, 2005. "Residual analysis for spatial point processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 617-666, November.
    11. Marco Di Marzio & Agnese Panzera & Charles C. Taylor, 2014. "Nonparametric Regression for Spherical Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 748-763, June.
    12. A. Baddeley & J. Møller & A. Pakes, 2008. "Properties of residuals for spatial point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 627-649, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    2. Coeurjolly, Jean-François, 2015. "Almost sure behavior of functionals of stationary Gibbs point processes," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 241-246.
    3. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    4. S Ward & H S Battey & E A K Cohen, 2023. "Nonparametric estimation of the intensity function of a spatial point process on a Riemannian manifold," Biometrika, Biometrika Trust, vol. 110(4), pages 1009-1021.
    5. Mohammad Ghorbani & Ottmar Cronie & Jorge Mateu & Jun Yu, 2021. "Functional marked point processes: a natural structure to unify spatio-temporal frameworks and to analyse dependent functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 529-568, September.
    6. Nicoletta D’Angelo & Giada Adelfio, 2024. "Minimum contrast for the first-order intensity estimation of spatial and spatio-temporal point processes," Statistical Papers, Springer, vol. 65(6), pages 3651-3679, August.
    7. Ya-Mei Chang & Ying-Chi Huang, 2024. "Estimating Species Abundance from Presence–Absence Maps by Kernel Estimation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 812-830, December.
    8. Arnone, Eleonora & Ferraccioli, Federico & Pigolotti, Clara & Sangalli, Laura M., 2022. "A roughness penalty approach to estimate densities over two-dimensional manifolds," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    9. Roba Bairakdar & Debbie Dupuis & Melina Mailhot, 2024. "Deviance Voronoi Residuals for Space-Time Point Process Models: An Application to Earthquake Insurance Risk," Papers 2410.04369, arXiv.org.
    10. Jean-François Coeurjolly & Ege Rubak, 2013. "Fast Covariance Estimation for Innovations Computed from a Spatial Gibbs Point Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 669-684, December.
    11. Edith Gabriel, 2014. "Estimating Second-Order Characteristics of Inhomogeneous Spatio-Temporal Point Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 411-431, June.
    12. Matthias Eckardt & Mehdi Moradi, 2024. "Marked Spatial Point Processes: Current State and Extensions to Point Processes on Linear Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(2), pages 346-378, June.
    13. Federico Ferraccioli & Eleonora Arnone & Livio Finos & James O. Ramsay & Laura M. Sangalli, 2021. "Nonparametric density estimation over complicated domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 346-368, April.
    14. Miguel Gómez-Antonio & Stuart Sweeney, 2021. "Testing the role of intra-metropolitan local factors on knowledge-intensive industries’ location choices," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 66(3), pages 699-728, June.
    15. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    16. Tonglin Zhang & Ge Lin, 2009. "Cluster Detection Based on Spatial Associations and Iterated Residuals in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 65(2), pages 353-360, June.
    17. Tsuruta, Yasuhito, 2024. "Bias correction for kernel density estimation with spherical data," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    18. M. N. M. Lieshout, 2020. "Infill Asymptotics and Bandwidth Selection for Kernel Estimators of Spatial Intensity Functions," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 995-1008, September.
    19. Leandro, Camila & Jay-Robert, Pierre & Mériguet, Bruno & Houard, Xavier & Renner, Ian W., 2020. "Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework," Ecological Modelling, Elsevier, vol. 438(C).
    20. Redenbach, Claudia & Särkkä, Aila, 2013. "Parameter estimation for growth interaction processes using spatio-temporal information," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 672-683.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:111:y:2024:i:2:p:625-641.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.