IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v85y2017i3p404-420.html
   My bibliography  Save this article

A Tutorial on Palm Distributions for Spatial Point Processes

Author

Listed:
  • Jean-François Coeurjolly
  • Jesper Møller
  • Rasmus Waagepetersen

Abstract

No abstract is available for this item.

Suggested Citation

  • Jean-François Coeurjolly & Jesper Møller & Rasmus Waagepetersen, 2017. "A Tutorial on Palm Distributions for Spatial Point Processes," International Statistical Review, International Statistical Institute, vol. 85(3), pages 404-420, December.
  • Handle: RePEc:bla:istatr:v:85:y:2017:i:3:p:404-420
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/insr.12205
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Yongtao, 2006. "A Composite Likelihood Approach in Fitting Spatial Point Process Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1502-1512, December.
    2. Frédéric Lavancier & Jesper Møller, 2016. "Modelling Aggregation on the Large Scale and Regularity on the Small Scale in Spatial Point Pattern Datasets," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 587-609, June.
    3. A. J. Baddeley & J. Møller & R. Waagepetersen, 2000. "Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 54(3), pages 329-350, November.
    4. Last, Günter, 1990. "Some remarks on conditional distributions for point processes," Stochastic Processes and their Applications, Elsevier, vol. 34(1), pages 121-135, February.
    5. Rasmus Waagepetersen & Yongtao Guan, 2009. "Two‐step estimation for inhomogeneous spatial point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 685-702, June.
    6. Frédéric Lavancier & Jesper Møller & Ege Rubak, 2015. "Determinantal point process models and statistical inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(4), pages 853-877, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdollah Jalilian & Jorge Mateu, 2023. "Assessing similarities between spatial point patterns with a Siamese neural network discriminant model," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 21-42, March.
    2. Ottmar Cronie & Mehdi Moradi & Christophe A N Biscio, 2024. "A cross-validation-based statistical theory for point processes," Biometrika, Biometrika Trust, vol. 111(2), pages 625-641.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Ange Napoléon Biscio & Frédéric Lavancier, 2017. "Contrast Estimation for Parametric Stationary Determinantal Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 204-229, March.
    2. Jesper Møller & Heidi S. Christensen & Francisco Cuevas-Pacheco & Andreas D. Christoffersen, 2021. "Structured Space-Sphere Point Processes and K-Functions," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 569-591, June.
    3. Michaela Prokešová & Jiří Dvořák & Eva B. Vedel Jensen, 2017. "Two-step estimation procedures for inhomogeneous shot-noise Cox processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 513-542, June.
    4. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    5. Tilman M. Davies & Martin L. Hazelton, 2013. "Assessing minimum contrast parameter estimation for spatial and spatiotemporal log‐Gaussian Cox processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 355-389, November.
    6. Chong Deng & Yongtao Guan & Rasmus P. Waagepetersen & Jingfei Zhang, 2017. "Second‐order quasi‐likelihood for spatial point processes," Biometrics, The International Biometric Society, vol. 73(4), pages 1311-1320, December.
    7. Jalilian, Abdollah, 2016. "On the higher order product density functions of a Neyman–Scott cluster point process," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 144-150.
    8. Jiří Dvořák & Michaela Prokešová, 2016. "Parameter Estimation for Inhomogeneous Space-Time Shot-Noise Cox Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 939-961, December.
    9. Michaela Prokešová & Jiří Dvořák, 2014. "Statistics for Inhomogeneous Space-Time Shot-Noise Cox Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 433-449, June.
    10. Poinas, Arnaud, 2019. "A bound of the β-mixing coefficient for point processes in terms of their intensity functions," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 88-93.
    11. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    12. Frédéric Lavancier & Arnaud Poinas & Rasmus Waagepetersen, 2021. "Adaptive estimating function inference for nonstationary determinantal point processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 87-107, March.
    13. Yehua Li & Yongtao Guan, 2014. "Functional Principal Component Analysis of Spatiotemporal Point Processes With Applications in Disease Surveillance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1205-1215, September.
    14. María P. Frías & Antoni Torres-Signes & María D. Ruiz-Medina & Jorge Mateu, 2022. "Spatial Cox processes in an infinite-dimensional framework," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 175-203, March.
    15. Rasmus Plenge Waagepetersen, 2007. "An Estimating Function Approach to Inference for Inhomogeneous Neyman–Scott Processes," Biometrics, The International Biometric Society, vol. 63(1), pages 252-258, March.
    16. Yu Ryan Yue & Ji Meng Loh, 2011. "Bayesian Semiparametric Intensity Estimation for Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 937-946, September.
    17. T. Mrkvička, 2014. "Distinguishing Different Types of Inhomogeneity in Neyman–Scott Point Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 385-395, June.
    18. Ute Hahn & Eva B. Vedel Jensen, 2016. "Hidden Second-order Stationary Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 455-475, June.
    19. José J. Quinlan & Fernando A. Quintana & Garritt L. Page, 2021. "On a class of repulsive mixture models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 445-461, June.
    20. Kateřina Koňasová & Jiří Dvořák, 2021. "Stochastic Reconstruction for Inhomogeneous Point Patterns," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 527-547, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:85:y:2017:i:3:p:404-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.