IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v29y2024i4d10.1007_s13253-023-00589-4.html
   My bibliography  Save this article

Estimating Species Abundance from Presence–Absence Maps by Kernel Estimation

Author

Listed:
  • Ya-Mei Chang

    (Tamkang University)

  • Ying-Chi Huang

    (Tamkang University)

Abstract

We present a novel method for estimating species abundance using presence–absence maps. Our approach takes the spatial context into consideration, distinguishing it from conventional methods. The proposed method is built upon a well-known kernel estimation for point pattern intensity, with the addition of a new parameter representing the mean abundance in each occupied cell. The parameter estimate is obtained through maximum likelihood estimation. The expected abundance corresponds to the integral of the intensity over the study area, which can be estimated by taking the Riemann sum of the intensity. The implementation of our method is straightforward, using existing packages in the R software. We compared various bandwidth selection methods within our approach and assessed the estimation performance against some approaches based on the random placement model or negative binomial model through the simulation study and an empirical forestry data in Barro Colorado Island (BCI), Panama. The results of the simulation and the application demonstrate that our method, with a carefully chosen bandwidth, outperforms the alternatives for highly aggregated data and improves the issue of underestimation. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Ya-Mei Chang & Ying-Chi Huang, 2024. "Estimating Species Abundance from Presence–Absence Maps by Kernel Estimation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 812-830, December.
  • Handle: RePEc:spr:jagbes:v:29:y:2024:i:4:d:10.1007_s13253-023-00589-4
    DOI: 10.1007/s13253-023-00589-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00589-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00589-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Müller, Christine H. & Huggins, Richard & Hwang, Wen-Han, 2011. "Consistent estimation of species abundance from a presence-absence map," Statistics & Probability Letters, Elsevier, vol. 81(9), pages 1449-1457, September.
    2. Greg McSwiggan & Adrian Baddeley & Gopalan Nair, 2017. "Kernel Density Estimation on a Linear Network," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 324-345, June.
    3. O Cronie & M N M Van Lieshout, 2018. "A non-model-based approach to bandwidth selection for kernel estimators of spatial intensity functions," Biometrika, Biometrika Trust, vol. 105(2), pages 455-462.
    4. Peter Diggle, 1985. "A Kernel Method for Smoothing Point Process Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 138-147, June.
    5. Wen-Han Hwang & Rachel V. Blakey & Jakub Stoklosa, 2020. "Right-Censored Mixed Poisson Count Models with Detection Times," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 112-132, March.
    6. Baddeley, Adrian & Turner, Rolf, 2005. "spatstat: An R Package for Analyzing Spatial Point Patterns," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i06).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. N. M. Lieshout, 2020. "Infill Asymptotics and Bandwidth Selection for Kernel Estimators of Spatial Intensity Functions," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 995-1008, September.
    2. Marcon, Eric & Puech, Florence, 2017. "A typology of distance-based measures of spatial concentration," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 56-67.
    3. María Cristina Rodríguez Rangel & Marcelino Sánchez Rivero & Julián Ramajo Hernández, 2020. "A Spatial Analysis of Intensity in Tourism Accommodation: An Application for Extremadura (Spain)," Economies, MDPI, vol. 8(2), pages 1-21, April.
    4. Davidson, Marty, 2024. "Strategic Point Processes," OSF Preprints g5r9t, Center for Open Science.
    5. S Ward & H S Battey & E A K Cohen, 2023. "Nonparametric estimation of the intensity function of a spatial point process on a Riemannian manifold," Biometrika, Biometrika Trust, vol. 110(4), pages 1009-1021.
    6. Nicoletta D’Angelo & Giada Adelfio, 2024. "Minimum contrast for the first-order intensity estimation of spatial and spatio-temporal point processes," Statistical Papers, Springer, vol. 65(6), pages 3651-3679, August.
    7. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    8. Roba Bairakdar & Debbie Dupuis & Melina Mailhot, 2024. "Deviance Voronoi Residuals for Space-Time Point Process Models: An Application to Earthquake Insurance Risk," Papers 2410.04369, arXiv.org.
    9. Jesper Møller & Carlos Díaz‐Avalos, 2010. "Structured Spatio‐Temporal Shot‐Noise Cox Point Process Models, with a View to Modelling Forest Fires," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 2-25, March.
    10. Ottmar Cronie & Mehdi Moradi & Christophe A N Biscio, 2024. "A cross-validation-based statistical theory for point processes," Biometrika, Biometrika Trust, vol. 111(2), pages 625-641.
    11. Isabel Fuentes-Santos & Wenceslao González-Manteiga & Jorge Mateu, 2016. "Consistent Smooth Bootstrap Kernel Intensity Estimation for Inhomogeneous Spatial Poisson Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 416-435, June.
    12. Yu Ryan Yue & Ji Meng Loh, 2011. "Bayesian Semiparametric Intensity Estimation for Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 937-946, September.
    13. Amaya-Gómez, Rafael & Sánchez-Silva, Mauricio & Muñoz, Felipe & Schoefs, Franck & Bastidas-Arteaga, Emilio, 2024. "Spatial characterization and simulation of new defects in corroded pipeline based on In-Line Inspections," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Borrajo, M.I. & González-Manteiga, W. & Martínez-Miranda, M.D., 2020. "Bootstrapping kernel intensity estimation for inhomogeneous point processes with spatial covariates," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    15. Arii, Ken & Caspersen, John P. & Jones, Trevor A. & Thomas, Sean C., 2008. "A selection harvesting algorithm for use in spatially explicit individual-based forest simulation models," Ecological Modelling, Elsevier, vol. 211(3), pages 251-266.
    16. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    17. Jiao Jieying & Hu Guanyu & Yan Jun, 2021. "A Bayesian marked spatial point processes model for basketball shot chart," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 77-90, June.
    18. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    19. Leandro, Camila & Jay-Robert, Pierre & Mériguet, Bruno & Houard, Xavier & Renner, Ian W., 2020. "Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework," Ecological Modelling, Elsevier, vol. 438(C).
    20. Guangshun Bai & Xuemei Yang & Guangxin Bai & Zhigang Kong & Jieyong Zhu & Shitao Zhang, 2024. "Examining the Controls on the Spatial Distribution of Landslides Triggered by the 2008 Wenchuan Ms 8.0 Earthquake, China, Using Methods of Spatial Point Pattern Analysis," Sustainability, MDPI, vol. 16(16), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:29:y:2024:i:4:d:10.1007_s13253-023-00589-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.