IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i506p748-763.html
   My bibliography  Save this article

Nonparametric Regression for Spherical Data

Author

Listed:
  • Marco Di Marzio
  • Agnese Panzera
  • Charles C. Taylor

Abstract

We develop nonparametric smoothing for regression when both the predictor and the response variables are defined on a sphere of whatever dimension. A local polynomial fitting approach is pursued, which retains all the advantages in terms of rate optimality, interpretability, and ease of implementation widely observed in the standard setting. Our estimates have a multi-output nature, meaning that each coordinate is separately estimated, within a scheme of a regression with a linear response. The main properties include linearity and rotational equivariance. This research has been motivated by the fact that very few models describe this kind of regression. Such current methods are surely not widely employable since they have a parametric nature, and also require the same dimensionality for prediction and response spaces, along with nonrandom design. Our approach does not suffer these limitations. Real-data case studies and simulation experiments are used to illustrate the effectiveness of the method.

Suggested Citation

  • Marco Di Marzio & Agnese Panzera & Charles C. Taylor, 2014. "Nonparametric Regression for Spherical Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 748-763, June.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:506:p:748-763
    DOI: 10.1080/01621459.2013.866567
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.866567
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.866567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di Marzio, Marco & Fensore, Stefania & Panzera, Agnese & Taylor, Charles C., 2019. "Kernel density classification for spherical data," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 23-29.
    2. Giwhyun Lee & Yu Ding & Marc G. Genton & Le Xie, 2015. "Power Curve Estimation With Multivariate Environmental Factors for Inland and Offshore Wind Farms," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 56-67, March.
    3. Andrea Meilán-Vila & Mario Francisco-Fernández & Rosa M. Crujeiras & Agnese Panzera, 2021. "Nonparametric multiple regression estimation for circular response," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 650-672, September.
    4. Lizhen Lin & Brian St. Thomas & Hongtu Zhu & David B. Dunson, 2017. "Extrinsic Local Regression on Manifold-Valued Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1261-1273, July.
    5. Di Marzio, Marco & Fensore, Stefania & Panzera, Agnese & Taylor, Charles C., 2019. "Local binary regression with spherical predictors," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 30-36.
    6. Jayant Jha & Atanu Biswas, 2020. "Orientation relationship in finite dimensional space," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 1011-1034, September.
    7. Eduardo GarcÍa-Portugués & Ingrid Van Keilegom & Rosa M. Crujeiras and & Wenceslao González-Manteiga, 2016. "Testing parametric models in linear-directional regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1178-1191, December.
    8. Ottmar Cronie & Mehdi Moradi & Christophe A N Biscio, 2024. "A cross-validation-based statistical theory for point processes," Biometrika, Biometrika Trust, vol. 111(2), pages 625-641.
    9. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:506:p:748-763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.