IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v57y2013i1p672-683.html
   My bibliography  Save this article

Parameter estimation for growth interaction processes using spatio-temporal information

Author

Listed:
  • Redenbach, Claudia
  • Särkkä, Aila

Abstract

Methods for the parameter estimation for a spatio-temporal marked point process model, the so-called growth-interaction model, are investigated. Least squares estimation methods for this model found in the literature are only concerned with fitting the mark distribution observed in the data. These methods are unable to distinguish between models which have the same birth, death, interaction and growth functions and parameters but different arrival strategies for the points. Hence, they are extended such that the spatial structure of a point pattern is also taken into account. The suggested methods are evaluated in a simulation study and applied to a small data set from forestry.

Suggested Citation

  • Redenbach, Claudia & Särkkä, Aila, 2013. "Parameter estimation for growth interaction processes using spatio-temporal information," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 672-683.
  • Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:672-683
    DOI: 10.1016/j.csda.2012.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731200309X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. J. Baddeley & J. Møller & R. Waagepetersen, 2000. "Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 54(3), pages 329-350, November.
    2. Cronie, Ottmar & Särkkä, Aila, 2011. "Some edge correction methods for marked spatio-temporal point process models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2209-2220, July.
    3. Renshaw, Eric & Sarkka, Aila, 2001. "Gibbs point processes for studying the development of spatial-temporal stochastic processes," Computational Statistics & Data Analysis, Elsevier, vol. 36(1), pages 85-105, March.
    4. Sarkka, Aila & Renshaw, Eric, 2006. "The analysis of marked point patterns evolving through space and time," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1698-1718, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eckardt, Matthias & González, Jonatan A. & Mateu, Jorge, 2021. "Graphical modelling and partial characteristics for multitype and multivariate-marked spatio-temporal point processes," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    2. Myllymäki, Mari & Kuronen, Mikko & Bianchi, Simone & Pommerening, Arne & Mehtätalo, Lauri, 2024. "A Bayesian approach to projecting forest dynamics and related uncertainty: An application to continuous cover forests," Ecological Modelling, Elsevier, vol. 491(C).
    3. Häbel, Henrike & Myllymäki, Mari & Pommerening, Arne, 2019. "New insights on the behaviour of alternative types of individual-based tree models for natural forests," Ecological Modelling, Elsevier, vol. 406(C), pages 23-32.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Ghorbani & Ottmar Cronie & Jorge Mateu & Jun Yu, 2021. "Functional marked point processes: a natural structure to unify spatio-temporal frameworks and to analyse dependent functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 529-568, September.
    2. Pommerening, Arne & LeMay, Valerie & Stoyan, Dietrich, 2011. "Model-based analysis of the influence of ecological processes on forest point pattern formation—A case study," Ecological Modelling, Elsevier, vol. 222(3), pages 666-678.
    3. O. Cronie & M. N. M. Van Lieshout, 2015. "A J -function for Inhomogeneous Spatio-temporal Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 562-579, June.
    4. Frédéric Lavancier & Ronan Le Guével, 2021. "Spatial birth–death–move processes: Basic properties and estimation of their intensity functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 798-825, September.
    5. Edith Gabriel, 2014. "Estimating Second-Order Characteristics of Inhomogeneous Spatio-Temporal Point Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 411-431, June.
    6. Häbel, Henrike & Myllymäki, Mari & Pommerening, Arne, 2019. "New insights on the behaviour of alternative types of individual-based tree models for natural forests," Ecological Modelling, Elsevier, vol. 406(C), pages 23-32.
    7. Eckardt, Matthias & González, Jonatan A. & Mateu, Jorge, 2021. "Graphical modelling and partial characteristics for multitype and multivariate-marked spatio-temporal point processes," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    8. Comas, C. & Mateu, J., 2008. "Space-time dependence dynamics for birth-death point processes," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2715-2719, November.
    9. Renshaw, Eric & Mateu, Jorge & Saura, Fuensanta, 2007. "Disentangling mark/point interaction in marked-point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3123-3144, March.
    10. Cronie, Ottmar & Särkkä, Aila, 2011. "Some edge correction methods for marked spatio-temporal point process models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2209-2220, July.
    11. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    12. Edith Gabriel & Peter J. Diggle, 2009. "Second‐order analysis of inhomogeneous spatio‐temporal point process data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 43-51, February.
    13. Arbia, Giuseppe & Espa, Giuseppe & Giuliani, Diego & Dickson, Maria Michela, 2014. "Spatio-temporal clustering in the pharmaceutical and medical device manufacturing industry: A geographical micro-level analysis," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 298-304.
    14. Kateřina Koňasová & Jiří Dvořák, 2021. "Stochastic Reconstruction for Inhomogeneous Point Patterns," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 527-547, June.
    15. Saltré, F. & Chuine, I. & Brewer, S. & Gaucherel, C., 2009. "A phenomenological model without dispersal kernel to model species migration," Ecological Modelling, Elsevier, vol. 220(24), pages 3546-3554.
    16. Eric Marcon & Florence Puech, 2012. "A typology of distance-based measures of spatial concentration," Working Papers halshs-00679993, HAL.
    17. Giuseppe Arbia & Patrizia Cella & Giuseppe Espa & Diego Giuliani, 2015. "A micro spatial analysis of firm demography: the case of food stores in the area of Trento (Italy)," Empirical Economics, Springer, vol. 48(3), pages 923-937, May.
    18. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    19. Ondřej Šedivý & Antti Penttinen, 2014. "Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 225-249, August.
    20. Marcon, Eric & Puech, Florence, 2017. "A typology of distance-based measures of spatial concentration," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 56-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:672-683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.