IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.04369.html
   My bibliography  Save this paper

Deviance Voronoi Residuals for Space-Time Point Process Models: An Application to Earthquake Insurance Risk

Author

Listed:
  • Roba Bairakdar
  • Debbie Dupuis
  • Melina Mailhot

Abstract

Insurance risk arising from catastrophes such as earthquakes a component of the Minimum Capital Test for federally regulated property and casualty insurance companies. Analyzing earthquake insurance risk requires well-fitted spatio-temporal point process models. Given the spatial heterogeneity of earthquakes, the ability to assess whether the fits are adequate in certain locations is crucial in obtaining usable models. Accordingly, we extend the use of Voronoi residuals to calculate deviance Voronoi residuals. We also create a simulation-based approach, in which losses and insurance claim payments are calculated by relying on earthquake hazard maps of Canada. As an alternative to the current guidelines of OSFI, a formula to calculate the country-wide minimum capital test is proposed based on the correlation between the provinces. Finally, an interactive web application is provided which allows the user to simulate earthquake damage and the resulting financial losses and insurance claims, at a chosen epicenter location.

Suggested Citation

  • Roba Bairakdar & Debbie Dupuis & Melina Mailhot, 2024. "Deviance Voronoi Residuals for Space-Time Point Process Models: An Application to Earthquake Insurance Risk," Papers 2410.04369, arXiv.org.
  • Handle: RePEc:arx:papers:2410.04369
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.04369
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yosihiko Ogata, 1998. "Space-Time Point-Process Models for Earthquake Occurrences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 379-402, June.
    2. A. Baddeley & J. Møller & A. Pakes, 2008. "Properties of residuals for spatial point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 627-649, September.
    3. Peter Diggle, 1985. "A Kernel Method for Smoothing Point Process Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 138-147, June.
    4. A. Baddeley & R. Turner & J. Møller & M. Hazelton, 2005. "Residual analysis for spatial point processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 617-666, November.
    5. Jiancang Zhuang, 2006. "Second‐order residual analysis of spatiotemporal point processes and applications in model evaluation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(4), pages 635-653, September.
    6. Baddeley, Adrian & Turner, Rolf, 2005. "spatstat: An R Package for Analyzing Spatial Point Patterns," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i06).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davidson, Marty, 2024. "Strategic Point Processes," OSF Preprints g5r9t, Center for Open Science.
    2. Nicoletta D’Angelo & Giada Adelfio, 2024. "Minimum contrast for the first-order intensity estimation of spatial and spatio-temporal point processes," Statistical Papers, Springer, vol. 65(6), pages 3651-3679, August.
    3. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    4. Jesper Møller & Carlos Díaz‐Avalos, 2010. "Structured Spatio‐Temporal Shot‐Noise Cox Point Process Models, with a View to Modelling Forest Fires," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 2-25, March.
    5. Tonglin Zhang & Ge Lin, 2009. "Cluster Detection Based on Spatial Associations and Iterated Residuals in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 65(2), pages 353-360, June.
    6. Guangshun Bai & Xuemei Yang & Guangxin Bai & Zhigang Kong & Jieyong Zhu & Shitao Zhang, 2024. "Examining the Controls on the Spatial Distribution of Landslides Triggered by the 2008 Wenchuan Ms 8.0 Earthquake, China, Using Methods of Spatial Point Pattern Analysis," Sustainability, MDPI, vol. 16(16), pages 1-24, August.
    7. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    8. Marcon, Eric & Puech, Florence, 2017. "A typology of distance-based measures of spatial concentration," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 56-67.
    9. Andrew J Edelman, 2012. "Positive Interactions between Desert Granivores: Localized Facilitation of Harvester Ants by Kangaroo Rats," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-9, February.
    10. Amanda S. Hering & Sean Bair, 2014. "Characterizing spatial and chronological target selection of serial offenders," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 123-140, January.
    11. Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
    12. Coeurjolly, Jean-François, 2015. "Almost sure behavior of functionals of stationary Gibbs point processes," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 241-246.
    13. María Cristina Rodríguez Rangel & Marcelino Sánchez Rivero & Julián Ramajo Hernández, 2020. "A Spatial Analysis of Intensity in Tourism Accommodation: An Application for Extremadura (Spain)," Economies, MDPI, vol. 8(2), pages 1-21, April.
    14. Jean-François Coeurjolly, 2017. "Median-based estimation of the intensity of a spatial point process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 303-331, April.
    15. Kenneth A. Flagg & Andrew Hoegh & John J. Borkowski, 2020. "Modeling Partially Surveyed Point Process Data: Inferring Spatial Point Intensity of Geomagnetic Anomalies," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 186-205, June.
    16. O. Cronie & M. N. M. Van Lieshout, 2015. "A J -function for Inhomogeneous Spatio-temporal Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 562-579, June.
    17. Janine B. Illian & David F. R. P. Burslem, 2017. "Improving the usability of spatial point process methodology: an interdisciplinary dialogue between statistics and ecology," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 495-520, October.
    18. Giada Adelfio & Marcello Chiodi, 2021. "Including covariates in a space-time point process with application to seismicity," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 947-971, September.
    19. Ian W. Renner & David I. Warton, 2013. "Equivalence of MAXENT and Poisson Point Process Models for Species Distribution Modeling in Ecology," Biometrics, The International Biometric Society, vol. 69(1), pages 274-281, March.
    20. Jean-François Coeurjolly & Ege Rubak, 2013. "Fast Covariance Estimation for Innovations Computed from a Spatial Gibbs Point Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 669-684, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.04369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.