IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v174y2022ics0167947322001074.html
   My bibliography  Save this article

A roughness penalty approach to estimate densities over two-dimensional manifolds

Author

Listed:
  • Arnone, Eleonora
  • Ferraccioli, Federico
  • Pigolotti, Clara
  • Sangalli, Laura M.

Abstract

An innovative nonparametric method for density estimation over general two-dimensional Riemannian manifolds is proposed. The method follows a functional data analysis approach, combining maximum likelihood estimation with a roughness penalty that involves a differential operator appropriately defined over the manifold domain, thus controlling the smoothness of the estimate. The proposed method can accurately handle point pattern data over complicated curved domains. Moreover, it is able to capture complex multimodal signals, with strongly localized and highly skewed modes, with varying directions and intensity of anisotropy. The estimation procedure exploits a discretization in finite element bases, enabling great flexibility on the spatial domain. The method is tested through simulation studies, showing the strengths of the proposed approach. Finally, the density estimation method is illustrated with an application to the distribution of earthquakes in the world.

Suggested Citation

  • Arnone, Eleonora & Ferraccioli, Federico & Pigolotti, Clara & Sangalli, Laura M., 2022. "A roughness penalty approach to estimate densities over two-dimensional manifolds," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:csdana:v:174:y:2022:i:c:s0167947322001074
    DOI: 10.1016/j.csda.2022.107527
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322001074
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pelletier, Bruno, 2005. "Kernel density estimation on Riemannian manifolds," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 297-304, July.
    2. D. Simpson & J. B. Illian & F. Lindgren & S. H. Sørbye & H. Rue, 2016. "Going off grid: computationally efficient inference for log-Gaussian Cox processes," Biometrika, Biometrika Trust, vol. 103(1), pages 49-70.
    3. Federico Ferraccioli & Eleonora Arnone & Livio Finos & James O. Ramsay & Laura M. Sangalli, 2021. "Nonparametric density estimation over complicated domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 346-368, April.
    4. Kim, Yoon Tae & Park, Hyun Suk, 2013. "Geometric structures arising from kernel density estimation on Riemannian manifolds," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 112-126.
    5. Arnone, Eleonora & Azzimonti, Laura & Nobile, Fabio & Sangalli, Laura M., 2019. "Modeling spatially dependent functional data via regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 275-295.
    6. Suman Rakshit & Tilman Davies & M. Mehdi Moradi & Greg McSwiggan & Gopalan Nair & Jorge Mateu & Adrian Baddeley, 2019. "Fast Kernel Smoothing of Point Patterns on a Large Network using Two‐dimensional Convolution," International Statistical Review, International Statistical Institute, vol. 87(3), pages 531-556, December.
    7. Greg McSwiggan & Adrian Baddeley & Gopalan Nair, 2017. "Kernel Density Estimation on a Linear Network," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 324-345, June.
    8. Berry, Tyrus & Sauer, Timothy, 2017. "Density estimation on manifolds with boundary," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 1-17.
    9. Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
    10. Victor M. Panaretos & Kjell Konis, 2012. "Nonparametric Construction of Multivariate Kernels," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1085-1095, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Ferraccioli & Eleonora Arnone & Livio Finos & James O. Ramsay & Laura M. Sangalli, 2021. "Nonparametric density estimation over complicated domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 346-368, April.
    2. Khardani, Salah & Yao, Anne Françoise, 2022. "Nonparametric recursive regression estimation on Riemannian Manifolds," Statistics & Probability Letters, Elsevier, vol. 182(C).
    3. Berry, Tyrus & Sauer, Timothy, 2017. "Density estimation on manifolds with boundary," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 1-17.
    4. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Asta, Dena Marie, 2021. "Kernel density estimation on symmetric spaces of non-compact type," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    6. S Ward & H S Battey & E A K Cohen, 2023. "Nonparametric estimation of the intensity function of a spatial point process on a Riemannian manifold," Biometrika, Biometrika Trust, vol. 110(4), pages 1009-1021.
    7. Ki, Dohyeong & Park, Byeong U., 2021. "Intrinsic Hölder classes of density functions on Riemannian manifolds and lower bounds to convergence rates," Statistics & Probability Letters, Elsevier, vol. 169(C).
    8. Ottmar Cronie & Mehdi Moradi & Christophe A N Biscio, 2024. "A cross-validation-based statistical theory for point processes," Biometrika, Biometrika Trust, vol. 111(2), pages 625-641.
    9. Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
    10. Rabi Bhattacharya & Rachel Oliver, 2019. "Nonparametric Analysis of Non-Euclidean Data on Shapes and Images," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-36, February.
    11. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
    12. Kim, Yoon Tae & Park, Hyun Suk, 2013. "Geometric structures arising from kernel density estimation on Riemannian manifolds," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 112-126.
    13. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    14. Guillermo Henry & Daniela Rodriguez, 2009. "Robust nonparametric regression on Riemannian manifolds," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 611-628.
    15. Hielscher, Ralf & Lippert, Laura, 2021. "Locally isometric embeddings of quotients of the rotation group modulo finite symmetries," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    16. García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
    17. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    18. Mammen, Enno & Martínez Miranda, María Dolores & Nielsen, Jens Perch, 2015. "In-sample forecasting applied to reserving and mesothelioma mortality," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 76-86.
    19. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    20. Unn Dahlén & Johan Lindström & Marko Scholze, 2020. "Spatiotemporal reconstructions of global CO2‐fluxes using Gaussian Markov random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:174:y:2022:i:c:s0167947322001074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.