IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v29y2018i1p19-30..html
   My bibliography  Save this article

Do wild ungulates experience higher stress with humans than with large carnivores?

Author

Listed:
  • Adam Zbyryt
  • Jakub W Bubnicki
  • Dries P J Kuijper
  • Martin Dehnhard
  • Marcin Churski
  • Krzysztof Schmidt
  • Bob WongHandling editor

Abstract

Predation is a major selective pressure for prey; however, whether it evokes stronger stress response relative to anthropogenic factors in wild populations of animals is not clear. We studied the stress levels in red deer and roe deer in 6 populations exposed to potentially different levels of stress. We showed that stress levels in wild ungulate populations are lower and less variable in areas with large carnivores than in carnivore-free areas where human-related factors predominate.

Suggested Citation

  • Adam Zbyryt & Jakub W Bubnicki & Dries P J Kuijper & Martin Dehnhard & Marcin Churski & Krzysztof Schmidt & Bob WongHandling editor, 2018. "Do wild ungulates experience higher stress with humans than with large carnivores?," Behavioral Ecology, International Society for Behavioral Ecology, vol. 29(1), pages 19-30.
  • Handle: RePEc:oup:beheco:v:29:y:2018:i:1:p:19-30.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/arx142
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stewart Liley & Scott Creel, 2008. "What best explains vigilance in elk: characteristics of prey, predators, or the environment?," Behavioral Ecology, International Society for Behavioral Ecology, vol. 19(2), pages 245-254.
    2. Youngjo Lee & John A. Nelder, 2006. "Double hierarchical generalized linear models (with discussion)," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 139-185, April.
    3. Valeria Hochman & Burt P. Kotler, 2007. "Patch use, apprehension, and vigilance behavior of Nubian Ibex under perceived risk of predation," Behavioral Ecology, International Society for Behavioral Ecology, vol. 18(2), pages 368-374.
    4. Dries P.J. Kuijper & Jakub W. Bubnicki & Marcin Churski & Bjorn Mols & Pim van Hooft, 2015. "Context dependence of risk effects: wolves and tree logs create patches of fear in an old-growth forest," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(6), pages 1558-1568.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
    2. Dries P.J. Kuijper & Jakub W. Bubnicki & Marcin Churski & Bjorn Mols & Pim van Hooft, 2015. "Context dependence of risk effects: wolves and tree logs create patches of fear in an old-growth forest," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(6), pages 1558-1568.
    3. Leckie, George, 2014. "runmixregls: A Program to Run the MIXREGLS Mixed-Effects Location Scale Software from within Stata," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(c02).
    4. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
    5. I. Gijbels & I. Prosdocimi, 2011. "Smooth estimation of mean and dispersion function in extended generalized additive models with application to Italian induced abortion data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2391-2411, December.
    6. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.
    7. Wu, Jianmin & Bentler, Peter M., 2013. "Limited information estimation in binary factor analysis: A review and extension," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 392-403.
    8. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
    9. Kwon, Sunghoon & Oh, Seungyoung & Lee, Youngjo, 2016. "The use of random-effect models for high-dimensional variable selection problems," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 401-412.
    10. Meza, Cristian & Jaffrézic, Florence & Foulley, Jean-Louis, 2009. "Estimation in the probit normal model for binary outcomes using the SAEM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1350-1360, February.
    11. David R. Bickel, 2021. "The sufficiency of the evidence, the relevancy of the evidence, and quantifying both with a single number," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1157-1174, October.
    12. Rabindra Nath Das & Anis Chandra Mukhopadhyay, 2017. "Correlated random effects regression analysis for a log-normally distributed variable," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 897-915, April.
    13. Cho, S.-J. & Rabe-Hesketh, S., 2011. "Alternating imputation posterior estimation of models with crossed random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 12-25, January.
    14. Wang, Zhanfeng & Noh, Maengseok & Lee, Youngjo & Shi, Jian Qing, 2021. "A general robust t-process regression model," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    15. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    16. Jiayi Hu & Dongya Liu & Xinqi Zheng, 2024. "Research on Multi-Scenario Simulation of Urban Expansion for Beijing–Tianjin–Hebei Region Considering Multilevel Urban Flows," Land, MDPI, vol. 13(11), pages 1-19, November.
    17. Afrânio M.C. Vieira & Roseli A. Leandro & Clarice G.B. Dem�trio & Geert Molenberghs, 2011. "Double generalized linear model for tissue culture proportion data: a Bayesian perspective," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1717-1731, September.
    18. Matteo Sebastianelli & Sifiso M. Lukhele & Simona Secomandi & Stacey G. Souza & Bettina Haase & Michaella Moysi & Christos Nikiforou & Alexander Hutfluss & Jacquelyn Mountcastle & Jennifer Balacco & S, 2024. "A genomic basis of vocal rhythm in birds," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Jin, Shaobo & Lee, Youngjo, 2024. "Standard error estimates in hierarchical generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    20. George Leckie & Robert French & Chris Charlton & William Browne, 2014. "Modeling Heterogeneous Variance–Covariance Components in Two-Level Models," Journal of Educational and Behavioral Statistics, , vol. 39(5), pages 307-332, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:29:y:2018:i:1:p:19-30.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.