IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v30y2021i4d10.1007_s10260-020-00553-3.html
   My bibliography  Save this article

The sufficiency of the evidence, the relevancy of the evidence, and quantifying both with a single number

Author

Listed:
  • David R. Bickel

    (University of Ottawa)

Abstract

Consider a data set as a body of evidence that might confirm or disconfirm a hypothesis about a parameter value. If the posterior probability of the hypothesis is high enough, then the truth of the hypothesis is accepted for some purpose such as reporting a new discovery. In that way, the posterior probability measures the sufficiency of the evidence for accepting the hypothesis. It would only follow that the evidence is relevant to the hypothesis if the prior probability were not already high enough for acceptance. A measure of the relevancy of the evidence is the Bayes factor since it is the ratio of the posterior odds to the prior odds. Measures of the sufficiency of the evidence and measures of the relevancy of the evidence are not mutually exclusive. An example falling in both classes is the likelihood ratio statistic, perhaps based on a pseudolikelihood function that eliminates nuisance parameters. There is a sense in which the likelihood ratio statistic measures both the sufficiency of the evidence and its relevancy. That result is established by representing the likelihood ratio statistic in terms of a conditional possibility measure that satisfies logical coherence rather than probabilistic coherence.

Suggested Citation

  • David R. Bickel, 2021. "The sufficiency of the evidence, the relevancy of the evidence, and quantifying both with a single number," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1157-1174, October.
  • Handle: RePEc:spr:stmapp:v:30:y:2021:i:4:d:10.1007_s10260-020-00553-3
    DOI: 10.1007/s10260-020-00553-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-020-00553-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-020-00553-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David R. Bickel, 2011. "Estimating the Null Distribution to Adjust Observed Confidence Levels for Genome-Scale Screening," Biometrics, The International Biometric Society, vol. 67(2), pages 363-370, June.
    2. Wang, Hsiuying, 2007. "Modified p-values for one-sided testing in restricted parameter spaces," Statistics & Probability Letters, Elsevier, vol. 77(6), pages 625-631, March.
    3. Hoch, Jeffrey S. & Blume, Jeffrey D., 2008. "Measuring and illustrating statistical evidence in a cost-effectiveness analysis," Journal of Health Economics, Elsevier, vol. 27(2), pages 476-495, March.
    4. Strug, Lisa J. & Rohde, Charles A. & Corey, Paul N., 2007. "An Introduction to Evidential Sample Size Calculations," The American Statistician, American Statistical Association, vol. 61, pages 207-212, August.
    5. Youngjo Lee & John A. Nelder, 2006. "Double hierarchical generalized linear models (with discussion)," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 139-185, April.
    6. P. Walley & S. Moral, 1999. "Upper probabilities based only on the likelihood function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 831-847.
    7. Stephan Morgenthaler & Robert G. Staudte, 2012. "Advantages of Variance Stabilization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(4), pages 714-728, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
    2. Leckie, George, 2014. "runmixregls: A Program to Run the MIXREGLS Mixed-Effects Location Scale Software from within Stata," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(c02).
    3. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
    4. I. Gijbels & I. Prosdocimi, 2011. "Smooth estimation of mean and dispersion function in extended generalized additive models with application to Italian induced abortion data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2391-2411, December.
    5. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.
    6. Wu, Jianmin & Bentler, Peter M., 2013. "Limited information estimation in binary factor analysis: A review and extension," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 392-403.
    7. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
    8. Kwon, Sunghoon & Oh, Seungyoung & Lee, Youngjo, 2016. "The use of random-effect models for high-dimensional variable selection problems," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 401-412.
    9. David R. Bickel, 2013. "Minimax-Optimal Strength of Statistical Evidence for a Composite Alternative Hypothesis," International Statistical Review, International Statistical Institute, vol. 81(2), pages 188-206, August.
    10. Meza, Cristian & Jaffrézic, Florence & Foulley, Jean-Louis, 2009. "Estimation in the probit normal model for binary outcomes using the SAEM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1350-1360, February.
    11. Robert Staudte, 2014. "Inference for quantile measures of skewness," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 751-768, December.
    12. David R. Bickel, 2014. "Small-scale Inference: Empirical Bayes and Confidence Methods for as Few as a Single Comparison," International Statistical Review, International Statistical Institute, vol. 82(3), pages 457-476, December.
    13. Luke A. Prendergast & Robert G. Staudte, 2017. "When large n is not enough – Distribution-free interval estimators for ratios of quantiles," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 15(3), pages 277-293, September.
    14. Bickel David R., 2013. "Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(4), pages 529-543, August.
    15. Rabindra Nath Das & Anis Chandra Mukhopadhyay, 2017. "Correlated random effects regression analysis for a log-normally distributed variable," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 897-915, April.
    16. Cho, S.-J. & Rabe-Hesketh, S., 2011. "Alternating imputation posterior estimation of models with crossed random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 12-25, January.
    17. Wang, Zhanfeng & Noh, Maengseok & Lee, Youngjo & Shi, Jian Qing, 2021. "A general robust t-process regression model," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    18. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    19. Jiayi Hu & Dongya Liu & Xinqi Zheng, 2024. "Research on Multi-Scenario Simulation of Urban Expansion for Beijing–Tianjin–Hebei Region Considering Multilevel Urban Flows," Land, MDPI, vol. 13(11), pages 1-19, November.
    20. Afrânio M.C. Vieira & Roseli A. Leandro & Clarice G.B. Dem�trio & Geert Molenberghs, 2011. "Double generalized linear model for tissue culture proportion data: a Bayesian perspective," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1717-1731, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:30:y:2021:i:4:d:10.1007_s10260-020-00553-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.