IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v059c02.html
   My bibliography  Save this article

runmixregls: A Program to Run the MIXREGLS Mixed-Effects Location Scale Software from within Stata

Author

Listed:
  • Leckie, George

Abstract

Hedeker and Nordgren (2013) present the stand-alone MIXREGLS program for fitting the mixed-effects location scale model to continuous longitudinal and other clustered data. This model can be used when interest lies in joint modeling the mean and dispersion of subjects' responses over time. The model extends the standard two-level randomintercept mixed model by allowing both the within- and between-subject variances to be influenced by the covariates and for the within-subject variance to additionally depend on a subject random-scale effect. In this article we present the runmixregls command to run MIXREGLS seamlessly from within Stata. We illustrate the notable advantages of using runmixregls by replicating and extending the two example analyses presented in Hedeker and Nordgren (2013). We then use runmixregls to demonstrate a new and important research finding. Namely, that ignoring the random-scale effect in the withinsubject variance function will lead to the regression coefficients in this function to be estimated with spurious precision, especially the regression coefficients of subject-level covariates.

Suggested Citation

  • Leckie, George, 2014. "runmixregls: A Program to Run the MIXREGLS Mixed-Effects Location Scale Software from within Stata," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(c02).
  • Handle: RePEc:jss:jstsof:v:059:c02
    DOI: http://hdl.handle.net/10.18637/jss.v059.c02
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v059c02/v59c02.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v059c02/runmixregls.ado
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v059c02/runmixregls.sthlp
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v059c02/v59c02.do
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v059c02/posmood.dta
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v059c02/reisby.dta
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v059.c02?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Youngjo Lee & John A. Nelder, 2006. "Double hierarchical generalized linear models (with discussion)," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 139-185, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Leckie & Robert French & Chris Charlton & William Browne, 2014. "Modeling Heterogeneous Variance–Covariance Components in Two-Level Models," Journal of Educational and Behavioral Statistics, , vol. 39(5), pages 307-332, October.
    2. Brock A. Rigsby & Reagan L. Miller & Megan J. Moran & Addie J. Rzonca & Jonathan I. Najman & Melanie S. Adams & Mark A. Prince & Rachel G. Lucas-Thompson, 2024. "Bi-Directional and Time-Lagged Associations between Engagement and Mental Health Symptoms in a Group Mindfulness-Based Mental Health Intervention," IJERPH, MDPI, vol. 21(8), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
    2. Bohua Yu & Wei Song & Yanqing Lang, 2017. "Spatial Patterns and Driving Forces of Greenhouse Land Change in Shouguang City, China," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    3. Rabindra Nath Das & Jeong-Soo Park, 2012. "Discrepancy in regression estimates between log-normal and gamma: some case studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 97-111, March.
    4. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    5. Lee, Sangin & Lee, Youngjo & Pawitan, Yudi, 2018. "Sparse pathway-based prediction models for high-throughput molecular data," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 125-135.
    6. Lee, Sangin & Pawitan, Yudi & Lee, Youngjo, 2015. "A random-effect model approach for group variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 147-157.
    7. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
    8. I. Gijbels & I. Prosdocimi, 2011. "Smooth estimation of mean and dispersion function in extended generalized additive models with application to Italian induced abortion data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2391-2411, December.
    9. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.
    10. Stephen R. Martin & Philippe Rast, 2022. "The Reliability Factor: Modeling Individual Reliability with Multiple Items from a Single Assessment," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1318-1342, December.
    11. Wu, Jianmin & Bentler, Peter M., 2013. "Limited information estimation in binary factor analysis: A review and extension," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 392-403.
    12. Rezzy Eko Caraka & Yusra Yusra & Toni Toharudin & Rung-Ching Chen & Mohammad Basyuni & Vilzati Juned & Prana Ugiana Gio & Bens Pardamean, 2021. "Did Noise Pollution Really Improve during COVID-19? Evidence from Taiwan," Sustainability, MDPI, vol. 13(11), pages 1-12, May.
    13. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
    14. Kwon, Sunghoon & Oh, Seungyoung & Lee, Youngjo, 2016. "The use of random-effect models for high-dimensional variable selection problems," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 401-412.
    15. Jiin Choi & Stewart J. Anderson & Thomas J. Richards & Wesley K. Thompson, 2014. "Prediction of transplant-free survival in idiopathic pulmonary fibrosis patients using joint models for event times and mixed multivariate longitudinal data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(10), pages 2192-2205, October.
    16. Yudi Pawitan & Youngjo Lee, 2017. "Wallet Game: Probability, Likelihood, and Extended Likelihood," The American Statistician, Taylor & Francis Journals, vol. 71(2), pages 120-122, April.
    17. Meza, Cristian & Jaffrézic, Florence & Foulley, Jean-Louis, 2009. "Estimation in the probit normal model for binary outcomes using the SAEM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1350-1360, February.
    18. Fernanda B. Rizzato & Roseli A. Leandro & Clarice G.B. Demétrio & Geert Molenberghs, 2016. "A Bayesian approach to analyse overdispersed longitudinal count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2085-2109, August.
    19. Jun, Seung-Pyo & Lee, Jae-Seong & Lee, Juyeon, 2020. "Method of improving the performance of public-private innovation networks by linking heterogeneous DBs: Prediction using ensemble and PPDM models," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    20. Pan, Jianxin & Thompson, Robin, 2007. "Quasi-Monte Carlo estimation in generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5765-5775, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:059:c02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.