IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i8p1717-1731.html
   My bibliography  Save this article

Double generalized linear model for tissue culture proportion data: a Bayesian perspective

Author

Listed:
  • Afrânio M.C. Vieira
  • Roseli A. Leandro
  • Clarice G.B. Dem�trio
  • Geert Molenberghs

Abstract

Joint generalized linear models and double generalized linear models (DGLMs) were designed to model outcomes for which the variability can be explained using factors and/or covariates. When such factors operate, the usual normal regression models, which inherently exhibit constant variance, will under-represent variation in the data and hence may lead to erroneous inferences. For count and proportion data, such noise factors can generate a so-called overdispersion effect, and the use of binomial and Poisson models underestimates the variability and, consequently, incorrectly indicate significant effects. In this manuscript, we propose a DGLM from a Bayesian perspective, focusing on the case of proportion data, where the overdispersion can be modeled using a random effect that depends on some noise factors. The posterior joint density function was sampled using Monte Carlo Markov Chain algorithms, allowing inferences over the model parameters. An application to a data set on apple tissue culture is presented, for which it is shown that the Bayesian approach is quite feasible, even when limited prior information is available, thereby generating valuable insight for the researcher about its experimental results.

Suggested Citation

  • Afrânio M.C. Vieira & Roseli A. Leandro & Clarice G.B. Dem�trio & Geert Molenberghs, 2011. "Double generalized linear model for tissue culture proportion data: a Bayesian perspective," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1717-1731, September.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:8:p:1717-1731
    DOI: 10.1080/02664763.2010.529875
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2010.529875
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2010.529875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murray Aitkin, 1987. "Modelling Variance Heterogeneity in Normal Regression Using GLIM," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 332-339, November.
    2. J. A. Nelder & Y. Lee, 1991. "Generalized linear models for the analysis of taguchi‐type experiments," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 7(1), pages 107-120, March.
    3. Harvey, A C, 1976. "Estimating Regression Models with Multiplicative Heteroscedasticity," Econometrica, Econometric Society, vol. 44(3), pages 461-465, May.
    4. Philip Heidelberger & Peter D. Welch, 1983. "Simulation Run Length Control in the Presence of an Initial Transient," Operations Research, INFORMS, vol. 31(6), pages 1109-1144, December.
    5. Youngjo Lee & John A. Nelder, 2006. "Double hierarchical generalized linear models (with discussion)," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 139-185, April.
    6. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    7. A. M. C. Vieira & J. P. Hinde & C. G. B. Demetrio, 2000. "Zero-inflated proportion data models applied to a biological control assay," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(3), pages 373-389.
    8. Hinde, John & Demetrio, Clarice G. B., 1998. "Overdispersion: Models and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 27(2), pages 151-170, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Leckie & Robert French & Chris Charlton & William Browne, 2014. "Modeling Heterogeneous Variance–Covariance Components in Two-Level Models," Journal of Educational and Behavioral Statistics, , vol. 39(5), pages 307-332, October.
    2. Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
    3. Hong, Yi & Jin, Xing, 2022. "Pricing of variance swap rates and investment decisions of variance swaps: Evidence from a three-factor model," European Journal of Operational Research, Elsevier, vol. 303(2), pages 975-985.
    4. I. Gijbels & I. Prosdocimi, 2011. "Smooth estimation of mean and dispersion function in extended generalized additive models with application to Italian induced abortion data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2391-2411, December.
    5. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    6. Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.
    7. J. R. Lockwood & Katherine E. Castellano & Benjamin R. Shear, 2018. "Flexible Bayesian Models for Inferences From Coarsened, Group-Level Achievement Data," Journal of Educational and Behavioral Statistics, , vol. 43(6), pages 663-692, December.
    8. Iraj Kazemi & Fatemeh Hassanzadeh, 2021. "Marginalized random-effects models for clustered binomial data through innovative link functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 197-228, June.
    9. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
    10. Liu-Cang Wu & Zhong-Zhan Zhang & Deng-Ke Xu, 2012. "Variable selection in joint mean and variance models of Box--Cox transformation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(12), pages 2543-2555, August.
    11. Oludare Ariyo & Emmanuel Lesaffre & Geert Verbeke & Adrian Quintero, 2022. "Bayesian Model Selection for Longitudinal Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 516-547, November.
    12. Cysneiros, Francisco José A. & Paula, Gilberto A. & Galea, Manuel, 2007. "Heteroscedastic symmetrical linear models," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1084-1090, June.
    13. Xu, Dengke & Zhang, Zhongzhan, 2013. "A semiparametric Bayesian approach to joint mean and variance models," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1624-1631.
    14. William H. Greene & David A. Hensher, 2008. "Modeling Ordered Choices: A Primer and Recent Developments," Working Papers 08-26, New York University, Leonard N. Stern School of Business, Department of Economics.
    15. Yeşim Güney & Yetkin Tuaç & Şenay Özdemir & Olcay Arslan, 2021. "Robust estimation and variable selection in heteroscedastic regression model using least favorable distribution," Computational Statistics, Springer, vol. 36(2), pages 805-827, June.
    16. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
    17. Zhou, Haiming & Huang, Xianzheng, 2022. "Bayesian beta regression for bounded responses with unknown supports," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    18. Victor H. Lachos & Celso R.B. Cabral & Carlos A. Abanto-Valle, 2012. "A non-iterative sampling Bayesian method for linear mixed models with normal independent distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(3), pages 531-549, July.
    19. Matthew Quick & Nick Revington, 2022. "Exploring the global and local patterns of income segregation in Toronto, Canada: A multilevel multigroup modeling approach," Environment and Planning B, , vol. 49(2), pages 637-653, February.
    20. Hanneke Geerlings & Cees Glas & Wim Linden, 2011. "Modeling Rule-Based Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 337-359, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:8:p:1717-1731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.