IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47305-5.html
   My bibliography  Save this article

A genomic basis of vocal rhythm in birds

Author

Listed:
  • Matteo Sebastianelli

    (University of Cyprus
    Department of Medical Biochemistry and Microbiology)

  • Sifiso M. Lukhele

    (University of Cyprus)

  • Simona Secomandi

    (University of Cyprus)

  • Stacey G. Souza

    (University of Cyprus)

  • Bettina Haase

    (The Rockefeller University)

  • Michaella Moysi

    (University of Cyprus)

  • Christos Nikiforou

    (University of Cyprus)

  • Alexander Hutfluss

    (LMU Munich (LMU))

  • Jacquelyn Mountcastle

    (The Rockefeller University)

  • Jennifer Balacco

    (The Rockefeller University)

  • Sarah Pelan

    (Wellcome Sanger Institute)

  • William Chow

    (Wellcome Sanger Institute)

  • Olivier Fedrigo

    (The Rockefeller University)

  • Colleen T. Downs

    (University of KwaZulu-Natal)

  • Ara Monadjem

    (University of Eswatini
    University of Pretoria)

  • Niels J. Dingemanse

    (LMU Munich (LMU))

  • Erich D. Jarvis

    (The Rockefeller University
    The Rockefeller University
    Howard Hughes Medical Institute)

  • Alan Brelsford

    (University of California Riverside)

  • Bridgett M. vonHoldt

    (Princeton University)

  • Alexander N. G. Kirschel

    (University of Cyprus)

Abstract

Vocal rhythm plays a fundamental role in sexual selection and species recognition in birds, but little is known of its genetic basis due to the confounding effect of vocal learning in model systems. Uncovering its genetic basis could facilitate identifying genes potentially important in speciation. Here we investigate the genomic underpinnings of rhythm in vocal non-learning Pogoniulus tinkerbirds using 135 individual whole genomes distributed across a southern African hybrid zone. We find rhythm speed is associated with two genes that are also known to affect human speech, Neurexin-1 and Coenzyme Q8A. Models leveraging ancestry reveal these candidate loci also impact rhythmic stability, a trait linked with motor performance which is an indicator of quality. Character displacement in rhythmic stability suggests possible reinforcement against hybridization, supported by evidence of asymmetric assortative mating in the species producing faster, more stable rhythms. Because rhythm is omnipresent in animal communication, candidate genes identified here may shape vocal rhythm across birds and other vertebrates.

Suggested Citation

  • Matteo Sebastianelli & Sifiso M. Lukhele & Simona Secomandi & Stacey G. Souza & Bettina Haase & Michaella Moysi & Christos Nikiforou & Alexander Hutfluss & Jacquelyn Mountcastle & Jennifer Balacco & S, 2024. "A genomic basis of vocal rhythm in birds," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47305-5
    DOI: 10.1038/s41467-024-47305-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47305-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47305-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey Podos, 2001. "Correlated evolution of morphology and vocal signal structure in Darwin's finches," Nature, Nature, vol. 409(6817), pages 185-188, January.
    2. Arang Rhie & Shane A. McCarthy & Olivier Fedrigo & Joana Damas & Giulio Formenti & Sergey Koren & Marcela Uliano-Silva & William Chow & Arkarachai Fungtammasan & Juwan Kim & Chul Lee & Byung June Ko &, 2021. "Towards complete and error-free genome assemblies of all vertebrate species," Nature, Nature, vol. 592(7856), pages 737-746, April.
    3. Maria Niarchou & Daniel E. Gustavson & J. Fah Sathirapongsasuti & Manuel Anglada-Tort & Else Eising & Eamonn Bell & Evonne McArthur & Peter Straub & J. Devin McAuley & John A. Capra & Fredrik Ullén & , 2022. "Genome-wide association study of musical beat synchronization demonstrates high polygenicity," Nature Human Behaviour, Nature, vol. 6(9), pages 1292-1309, September.
    4. Olivier Delaneau & Jean-François Zagury & Matthew R. Robinson & Jonathan L. Marchini & Emmanouil T. Dermitzakis, 2019. "Accurate, scalable and integrative haplotype estimation," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Javier Sierro & Selvino R. Kort & Ian R. Hartley, 2023. "Sexual selection for both diversity and repetition in birdsong," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Youngjo Lee & John A. Nelder, 2006. "Double hierarchical generalized linear models (with discussion)," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 139-185, April.
    7. Kristaps Sokolovskis & Max Lundberg & Susanne Åkesson & Mikkel Willemoes & Tianhao Zhao & Violeta Caballero-Lopez & Staffan Bensch, 2023. "Migration direction in a songbird explained by two loci," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    8. Maxime Garcia & Frédéric Theunissen & Frédéric Sèbe & Julien Clavel & Andrea Ravignani & Thibaut Marin-Cudraz & Jérôme Fuchs & Nicolas Mathevon, 2020. "Evolution of communication signals and information during species radiation," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
    2. Bohua Yu & Wei Song & Yanqing Lang, 2017. "Spatial Patterns and Driving Forces of Greenhouse Land Change in Shouguang City, China," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    3. Leckie, George, 2014. "runmixregls: A Program to Run the MIXREGLS Mixed-Effects Location Scale Software from within Stata," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(c02).
    4. Rabindra Nath Das & Jeong-Soo Park, 2012. "Discrepancy in regression estimates between log-normal and gamma: some case studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 97-111, March.
    5. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    6. Iliana Bista & Jonathan M. D. Wood & Thomas Desvignes & Shane A. McCarthy & Michael Matschiner & Zemin Ning & Alan Tracey & James Torrance & Ying Sims & William Chow & Michelle Smith & Karen Oliver & , 2023. "Genomics of cold adaptations in the Antarctic notothenioid fish radiation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Lee, Sangin & Lee, Youngjo & Pawitan, Yudi, 2018. "Sparse pathway-based prediction models for high-throughput molecular data," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 125-135.
    8. Lee, Sangin & Pawitan, Yudi & Lee, Youngjo, 2015. "A random-effect model approach for group variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 147-157.
    9. Justin W. Baldwin & Joan Garcia-Porta & Carlos A. Botero, 2023. "Complementarity in Allen’s and Bergmann’s rules among birds," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
    11. I. Gijbels & I. Prosdocimi, 2011. "Smooth estimation of mean and dispersion function in extended generalized additive models with application to Italian induced abortion data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2391-2411, December.
    12. Heiner Kuhl & Kang Du & Manfred Schartl & Lukáš Kalous & Matthias Stöck & Dunja K. Lamatsch, 2022. "Equilibrated evolution of the mixed auto-/allopolyploid haplotype-resolved genome of the invasive hexaploid Prussian carp," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Ashley T. Sendell-Price & Frank J. Tulenko & Mats Pettersson & Du Kang & Margo Montandon & Sylke Winkler & Kathleen Kulb & Gavin P. Naylor & Adam Phillippy & Olivier Fedrigo & Jacquelyn Mountcastle & , 2023. "Low mutation rate in epaulette sharks is consistent with a slow rate of evolution in sharks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Zhen Huang & Ivanete De O. Furo & Jing Liu & Valentina Peona & Anderson J. B. Gomes & Wan Cen & Hao Huang & Yanding Zhang & Duo Chen & Ting Xue & Qiujin Zhang & Zhicao Yue & Quanxi Wang & Lingyu Yu & , 2022. "Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.
    16. Stephen R. Martin & Philippe Rast, 2022. "The Reliability Factor: Modeling Individual Reliability with Multiple Items from a Single Assessment," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1318-1342, December.
    17. Wu, Jianmin & Bentler, Peter M., 2013. "Limited information estimation in binary factor analysis: A review and extension," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 392-403.
    18. Lorenzo Carbonari & Alessio Farcomeni & Cosimo Petracchi & Giovanni Trovato, 2024. "Macroprudential Policies and Credit Volatility," Working Paper series 24-16, Rimini Centre for Economic Analysis.
    19. Donna M. Bond & Oscar Ortega-Recalde & Melanie K. Laird & Takashi Hayakawa & Kyle S. Richardson & Finlay.C. B. Reese & Bruce Kyle & Brooke E. McIsaac-Williams & Bruce C. Robertson & Yolanda Heezik & A, 2023. "The admixed brushtail possum genome reveals invasion history in New Zealand and novel imprinted genes," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Rezzy Eko Caraka & Yusra Yusra & Toni Toharudin & Rung-Ching Chen & Mohammad Basyuni & Vilzati Juned & Prana Ugiana Gio & Bens Pardamean, 2021. "Did Noise Pollution Really Improve during COVID-19? Evidence from Taiwan," Sustainability, MDPI, vol. 13(11), pages 1-12, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47305-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.