IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47305-5.html
   My bibliography  Save this article

A genomic basis of vocal rhythm in birds

Author

Listed:
  • Matteo Sebastianelli

    (University of Cyprus
    Department of Medical Biochemistry and Microbiology)

  • Sifiso M. Lukhele

    (University of Cyprus)

  • Simona Secomandi

    (University of Cyprus)

  • Stacey G. Souza

    (University of Cyprus)

  • Bettina Haase

    (The Rockefeller University)

  • Michaella Moysi

    (University of Cyprus)

  • Christos Nikiforou

    (University of Cyprus)

  • Alexander Hutfluss

    (LMU Munich (LMU))

  • Jacquelyn Mountcastle

    (The Rockefeller University)

  • Jennifer Balacco

    (The Rockefeller University)

  • Sarah Pelan

    (Wellcome Sanger Institute)

  • William Chow

    (Wellcome Sanger Institute)

  • Olivier Fedrigo

    (The Rockefeller University)

  • Colleen T. Downs

    (University of KwaZulu-Natal)

  • Ara Monadjem

    (University of Eswatini
    University of Pretoria)

  • Niels J. Dingemanse

    (LMU Munich (LMU))

  • Erich D. Jarvis

    (The Rockefeller University
    The Rockefeller University
    Howard Hughes Medical Institute)

  • Alan Brelsford

    (University of California Riverside)

  • Bridgett M. vonHoldt

    (Princeton University)

  • Alexander N. G. Kirschel

    (University of Cyprus)

Abstract

Vocal rhythm plays a fundamental role in sexual selection and species recognition in birds, but little is known of its genetic basis due to the confounding effect of vocal learning in model systems. Uncovering its genetic basis could facilitate identifying genes potentially important in speciation. Here we investigate the genomic underpinnings of rhythm in vocal non-learning Pogoniulus tinkerbirds using 135 individual whole genomes distributed across a southern African hybrid zone. We find rhythm speed is associated with two genes that are also known to affect human speech, Neurexin-1 and Coenzyme Q8A. Models leveraging ancestry reveal these candidate loci also impact rhythmic stability, a trait linked with motor performance which is an indicator of quality. Character displacement in rhythmic stability suggests possible reinforcement against hybridization, supported by evidence of asymmetric assortative mating in the species producing faster, more stable rhythms. Because rhythm is omnipresent in animal communication, candidate genes identified here may shape vocal rhythm across birds and other vertebrates.

Suggested Citation

  • Matteo Sebastianelli & Sifiso M. Lukhele & Simona Secomandi & Stacey G. Souza & Bettina Haase & Michaella Moysi & Christos Nikiforou & Alexander Hutfluss & Jacquelyn Mountcastle & Jennifer Balacco & S, 2024. "A genomic basis of vocal rhythm in birds," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47305-5
    DOI: 10.1038/s41467-024-47305-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47305-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47305-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey Podos, 2001. "Correlated evolution of morphology and vocal signal structure in Darwin's finches," Nature, Nature, vol. 409(6817), pages 185-188, January.
    2. Arang Rhie & Shane A. McCarthy & Olivier Fedrigo & Joana Damas & Giulio Formenti & Sergey Koren & Marcela Uliano-Silva & William Chow & Arkarachai Fungtammasan & Juwan Kim & Chul Lee & Byung June Ko &, 2021. "Towards complete and error-free genome assemblies of all vertebrate species," Nature, Nature, vol. 592(7856), pages 737-746, April.
    3. Olivier Delaneau & Jean-François Zagury & Matthew R. Robinson & Jonathan L. Marchini & Emmanouil T. Dermitzakis, 2019. "Accurate, scalable and integrative haplotype estimation," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Kristaps Sokolovskis & Max Lundberg & Susanne Åkesson & Mikkel Willemoes & Tianhao Zhao & Violeta Caballero-Lopez & Staffan Bensch, 2023. "Migration direction in a songbird explained by two loci," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    5. Javier Sierro & Selvino R. Kort & Ian R. Hartley, 2023. "Sexual selection for both diversity and repetition in birdsong," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Youngjo Lee & John A. Nelder, 2006. "Double hierarchical generalized linear models (with discussion)," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 139-185, April.
    7. Maxime Garcia & Frédéric Theunissen & Frédéric Sèbe & Julien Clavel & Andrea Ravignani & Thibaut Marin-Cudraz & Jérôme Fuchs & Nicolas Mathevon, 2020. "Evolution of communication signals and information during species radiation," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    8. Maria Niarchou & Daniel E. Gustavson & J. Fah Sathirapongsasuti & Manuel Anglada-Tort & Else Eising & Eamonn Bell & Evonne McArthur & Peter Straub & J. Devin McAuley & John A. Capra & Fredrik Ullén & , 2022. "Genome-wide association study of musical beat synchronization demonstrates high polygenicity," Nature Human Behaviour, Nature, vol. 6(9), pages 1292-1309, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heng Du & Lei Zhou & Zhen Liu & Yue Zhuo & Meilin Zhang & Qianqian Huang & Shiyu Lu & Kai Xing & Li Jiang & Jian-Feng Liu, 2024. "The 1000 Chinese Indigenous Pig Genomes Project provides insights into the genomic architecture of pigs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Gökberk Alagöz & Else Eising & Yasmina Mekki & Giacomo Bignardi & Pierre Fontanillas & Michel G. Nivard & Michelle Luciano & Nancy J. Cox & Simon E. Fisher & Reyna L. Gordon, 2025. "The shared genetic architecture and evolution of human language and musical rhythm," Nature Human Behaviour, Nature, vol. 9(2), pages 376-390, February.
    3. Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
    4. Leckie, George, 2014. "runmixregls: A Program to Run the MIXREGLS Mixed-Effects Location Scale Software from within Stata," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(c02).
    5. Iliana Bista & Jonathan M. D. Wood & Thomas Desvignes & Shane A. McCarthy & Michael Matschiner & Zemin Ning & Alan Tracey & James Torrance & Ying Sims & William Chow & Michelle Smith & Karen Oliver & , 2023. "Genomics of cold adaptations in the Antarctic notothenioid fish radiation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Justin W. Baldwin & Joan Garcia-Porta & Carlos A. Botero, 2023. "Complementarity in Allen’s and Bergmann’s rules among birds," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Katherine A. Kentistou & Brandon E. M. Lim & Lena R. Kaisinger & Valgerdur Steinthorsdottir & Luke N. Sharp & Kashyap A. Patel & Vinicius Tragante & Gareth Hawkes & Eugene J. Gardner & Thorhildur Olaf, 2025. "Rare variant associations with birth weight identify genes involved in adipose tissue regulation, placental function and insulin-like growth factor signalling," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    8. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
    9. I. Gijbels & I. Prosdocimi, 2011. "Smooth estimation of mean and dispersion function in extended generalized additive models with application to Italian induced abortion data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2391-2411, December.
    10. Heiner Kuhl & Kang Du & Manfred Schartl & Lukáš Kalous & Matthias Stöck & Dunja K. Lamatsch, 2022. "Equilibrated evolution of the mixed auto-/allopolyploid haplotype-resolved genome of the invasive hexaploid Prussian carp," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Saedis Saevarsdottir & Kristbjörg Bjarnadottir & Thorsteinn Markusson & Jonas Berglund & Thorunn A. Olafsdottir & Gisli H. Halldorsson & Gudrun Rutsdottir & Kristbjorg Gunnarsdottir & Asgeir Orn Arnth, 2024. "Start codon variant in LAG3 is associated with decreased LAG-3 expression and increased risk of autoimmune thyroid disease," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Zhen Huang & Ivanete De O. Furo & Jing Liu & Valentina Peona & Anderson J. B. Gomes & Wan Cen & Hao Huang & Yanding Zhang & Duo Chen & Ting Xue & Qiujin Zhang & Zhicao Yue & Quanxi Wang & Lingyu Yu & , 2022. "Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.
    14. Wu, Jianmin & Bentler, Peter M., 2013. "Limited information estimation in binary factor analysis: A review and extension," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 392-403.
    15. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
    16. Kyuto Sonehara & Yoshitaka Yano & Tatsuhiko Naito & Shinobu Goto & Hiroyuki Yoshihara & Takahiro Otani & Fumiko Ozawa & Tamao Kitaori & Koichi Matsuda & Takashi Nishiyama & Yukinori Okada & Mayumi Sug, 2024. "Common and rare genetic variants predisposing females to unexplained recurrent pregnancy loss," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Kwon, Sunghoon & Oh, Seungyoung & Lee, Youngjo, 2016. "The use of random-effect models for high-dimensional variable selection problems," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 401-412.
    18. Megan C. Lancaster & Hung-Hsin Chen & M. Benjamin Shoemaker & Matthew R. Fleming & Teresa L. Strickland & James T. Baker & Grahame F. Evans & Hannah G. Polikowsky & David C. Samuels & Chad D. Huff & D, 2024. "Detection of distant relatedness in biobanks to identify undiagnosed cases of Mendelian disease as applied to Long QT syndrome," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Junhui Yuan & Sanjie Jiang & Jianbo Jian & Mingyu Liu & Zhen Yue & Jiabao Xu & Juan Li & Chunyan Xu & Lihong Lin & Yi Jing & Xiaoxiao Zhang & Haixin Chen & Linjuan Zhang & Tao Fu & Shuiyan Yu & Zhangy, 2022. "Genomic basis of the giga-chromosomes and giga-genome of tree peony Paeonia ostii," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Meza, Cristian & Jaffrézic, Florence & Foulley, Jean-Louis, 2009. "Estimation in the probit normal model for binary outcomes using the SAEM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1350-1360, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47305-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.