IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v7y2024i5d10.1038_s41893-024-01320-y.html
   My bibliography  Save this article

Paving the way for sustainable decarbonization of the European cement industry

Author

Listed:
  • Otavio Cavalett

    (Norwegian University of Science and Technology (NTNU))

  • Marcos D. B. Watanabe

    (Norwegian University of Science and Technology (NTNU))

  • Mari Voldsund

    (SINTEF Energy Research)

  • Simon Roussanaly

    (SINTEF Energy Research)

  • Francesco Cherubini

    (Norwegian University of Science and Technology (NTNU))

Abstract

Cement production is a main source of carbon emissions. Decarbonization options exist, but their climate change mitigation potential, feasibility and environmental implications are still unclear. Here we assess 15 decarbonization options for the European cement industry under current and future conditions. Climate impacts per tonne of clinker produced today in European countries vary between 832 and 1,075 kg CO2-equivalents. Decarbonization options at various maturity levels can mitigate between 7 and 135 Mt CO2-equivalents per year (4–108% of today’s annual emissions from European cement plants), with a range of synergies and trade-offs. Solutions such as alternative fuels or technological improvements reduce climate impacts up to 30%, while a mix of ambitious complementary measures achieves a mitigation of about 50% by 2050. Only rapid and large-scale implementation of carbon capture and storage can approach climate neutrality. Carbon capture for production of e-fuels presents no significant mitigation benefits while it increases other environmental impacts.

Suggested Citation

  • Otavio Cavalett & Marcos D. B. Watanabe & Mari Voldsund & Simon Roussanaly & Francesco Cherubini, 2024. "Paving the way for sustainable decarbonization of the European cement industry," Nature Sustainability, Nature, vol. 7(5), pages 568-580, May.
  • Handle: RePEc:nat:natsus:v:7:y:2024:i:5:d:10.1038_s41893-024-01320-y
    DOI: 10.1038/s41893-024-01320-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-024-01320-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-024-01320-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
    2. Zhi Cao & Rupert J. Myers & Richard C. Lupton & Huabo Duan & Romain Sacchi & Nan Zhou & T. Reed Miller & Jonathan M. Cullen & Quansheng Ge & Gang Liu, 2020. "The sponge effect and carbon emission mitigation potentials of the global cement cycle," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Napp, T.A. & Gambhir, A. & Hills, T.P. & Florin, N. & Fennell, P.S, 2014. "A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 616-640.
    4. Takuma Watari & Zhi Cao & Sho Hata & Keisuke Nansai, 2022. "Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Myles R. Allen & Jan S. Fuglestvedt & Keith P. Shine & Andy Reisinger & Raymond T. Pierrehumbert & Piers M. Forster, 2016. "New use of global warming potentials to compare cumulative and short-lived climate pollutants," Nature Climate Change, Nature, vol. 6(8), pages 773-776, August.
    6. Marta G. Plaza & Sergio Martínez & Fernando Rubiera, 2020. "CO 2 Capture, Use, and Storage in the Cement Industry: State of the Art and Expectations," Energies, MDPI, vol. 13(21), pages 1-28, October.
    7. Stefania Osk Gardarsdottir & Edoardo De Lena & Matteo Romano & Simon Roussanaly & Mari Voldsund & José-Francisco Pérez-Calvo & David Berstad & Chao Fu & Rahul Anantharaman & Daniel Sutter & Matteo Gaz, 2019. "Comparison of Technologies for CO 2 Capture from Cement Production—Part 2: Cost Analysis," Energies, MDPI, vol. 12(3), pages 1-20, February.
    8. Sabbie A. Miller & Frances C. Moore, 2020. "Climate and health damages from global concrete production," Nature Climate Change, Nature, vol. 10(5), pages 439-443, May.
    9. Katsumasa Tanaka & Otávio Cavalett & William J. Collins & Francesco Cherubini, 2019. "Asserting the climate benefits of the coal-to-gas shift across temporal and spatial scales," Nature Climate Change, Nature, vol. 9(5), pages 389-396, May.
    10. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Decarbonization of cement production in a hydrogen economy," Applied Energy, Elsevier, vol. 317(C).
    11. Sabbie A. Miller & Arpad Horvath & Paulo J. M. Monteiro, 2018. "Impacts of booming concrete production on water resources worldwide," Nature Sustainability, Nature, vol. 1(1), pages 69-76, January.
    12. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L. Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna M, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    13. Sacchi, R. & Terlouw, T. & Siala, K. & Dirnaichner, A. & Bauer, C. & Cox, B. & Mutel, C. & Daioglou, V. & Luderer, G., 2022. "PRospective EnvironMental Impact asSEment (premise): A streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. Francesca Verones & Stefanie Hellweg & Assumpció Antón & Ligia B. Azevedo & Abhishek Chaudhary & Nuno Cosme & Stefano Cucurachi & Laura de Baan & Yan Dong & Peter Fantke & Laura Golsteijn & Michael Ha, 2020. "LC‐IMPACT: A regionalized life cycle damage assessment method," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1201-1219, December.
    15. Angelica Mendoza Beltran & Brian Cox & Chris Mutel & Detlef P. van Vuuren & David Font Vivanco & Sebastiaan Deetman & Oreane Y. Edelenbosch & Jeroen Guinée & Arnold Tukker, 2020. "When the Background Matters: Using Scenarios from Integrated Assessment Models in Prospective Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 24(1), pages 64-79, February.
    16. Davide Tonelli & Lorenzo Rosa & Paolo Gabrielli & Ken Caldeira & Alessandro Parente & Francesco Contino, 2023. "Global land and water limits to electrolytic hydrogen production using wind and solar resources," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Anne‐Marie Boulay & Pascal Lesage & Ben Amor & Stephan Pfister, 2021. "Quantifying uncertainty for AWARE characterization factors," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1588-1601, December.
    18. Holly Jean Buck & Wim Carton & Jens Friis Lund & Nils Markusson, 2023. "Why residual emissions matter right now," Nature Climate Change, Nature, vol. 13(4), pages 351-358, April.
    19. Aranda Usón, Alfonso & López-Sabirón, Ana M. & Ferreira, Germán & Llera Sastresa, Eva, 2013. "Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 242-260.
    20. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna Mo, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Post-Print hal-02380468, HAL.
    21. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    22. Dossow, Marcel & Dieterich, Vincent & Hanel, Andreas & Spliethoff, Hartmut & Fendt, Sebastian, 2021. "Improving carbon efficiency for an advanced Biomass-to-Liquid process using hydrogen and oxygen from electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    23. Niall Mac Dowell & Paul S. Fennell & Nilay Shah & Geoffrey C. Maitland, 2017. "The role of CO2 capture and utilization in mitigating climate change," Nature Climate Change, Nature, vol. 7(4), pages 243-249, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nehdi, Moncef L. & Marani, Afshin & Zhang, Lei, 2024. "Is net-zero feasible: Systematic review of cement and concrete decarbonization technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Martin, Nick & Zinck Thellufsen, Jakob & Chang, Miguel & Talens-Peiró, Laura & Madrid-López, Cristina, 2024. "The many faces of heating transitions. Deeper understandings of future systems in Sweden and beyond," Energy, Elsevier, vol. 290(C).
    3. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    4. Ren, Ming & Ma, Teng & Fang, Chen & Liu, Xiaorui & Guo, Chaoyi & Zhang, Silu & Zhou, Ziqiao & Zhu, Yanlei & Dai, Hancheng & Huang, Chen, 2023. "Negative emission technology is key to decarbonizing China's cement industry," Applied Energy, Elsevier, vol. 329(C).
    5. Martin, Nick & Talens-Peiró, Laura & Villalba-Méndez, Gara & Nebot-Medina, Rafael & Madrid-López, Cristina, 2023. "An energy future beyond climate neutrality: Comprehensive evaluations of transition pathways," Applied Energy, Elsevier, vol. 331(C).
    6. Martin Greco-Coppi & Carina Hofmann & Diethelm Walter & Jochen Ströhle & Bernd Epple, 2023. "Negative CO2 emissions in the lime production using an indirectly heated carbonate looping process," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(6), pages 1-32, August.
    7. Takuma Watari & Zhi Cao & Sho Hata & Keisuke Nansai, 2022. "Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Izhar Hussain Shah & Sabbie A. Miller & Daqian Jiang & Rupert J. Myers, 2022. "Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    10. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    11. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Hache, Emmanuel & Simoën, Marine & Seck, Gondia Sokhna & Bonnet, Clément & Jabberi, Aymen & Carcanague, Samuel, 2020. "The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios," International Economics, Elsevier, vol. 163(C), pages 114-133.
    13. Xiao, Yihao & Xue, Yahui, 2024. "A review on application of microwave in cement life cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Tobias Junne & Sonja Simon & Jens Buchgeister & Maximilian Saiger & Manuel Baumann & Martina Haase & Christina Wulf & Tobias Naegler, 2020. "Environmental Sustainability Assessment of Multi-Sectoral Energy Transformation Pathways: Methodological Approach and Case Study for Germany," Sustainability, MDPI, vol. 12(19), pages 1-28, October.
    15. Shen, Peiliang & Jiang, Yi & Zhang, Yangyang & Liu, Songhui & Xuan, Dongxing & Lu, Jianxin & Zhang, Shipeng & Poon, Chi Sun, 2023. "Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    17. Tafarte, Philip & Lehmann, Paul, 2023. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity – A case study for Germany," Ecological Economics, Elsevier, vol. 209(C).
    18. Porcelli, Roberto & Gibon, Thomas & Marazza, Diego & Righi, Serena & Rugani, Benedetto, 2023. "Prospective environmental impact assessment and simulation applied to an emerging biowaste-based energy technology in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    19. Andrew William Ruttinger & Miyuru Kannangara & Jalil Shadbahr & Phil De Luna & Farid Bensebaa, 2021. "How CO 2 -to-Diesel Technology Could Help Reach Net-Zero Emissions Targets: A Canadian Case Study," Energies, MDPI, vol. 14(21), pages 1-21, October.
    20. Koytsoumpa, E.I. & Magiri – Skouloudi, D. & Karellas, S. & Kakaras, E., 2021. "Bioenergy with carbon capture and utilization: A review on the potential deployment towards a European circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:7:y:2024:i:5:d:10.1038_s41893-024-01320-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.