IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v24y2020i1p64-79.html
   My bibliography  Save this article

When the Background Matters: Using Scenarios from Integrated Assessment Models in Prospective Life Cycle Assessment

Author

Listed:
  • Angelica Mendoza Beltran
  • Brian Cox
  • Chris Mutel
  • Detlef P. van Vuuren
  • David Font Vivanco
  • Sebastiaan Deetman
  • Oreane Y. Edelenbosch
  • Jeroen Guinée
  • Arnold Tukker

Abstract

Prospective life cycle assessment (LCA) needs to deal with the large epistemological uncertainty about the future to support more robust future environmental impact assessments of technologies. This study proposes a novel approach that systematically changes the background processes in a prospective LCA based on scenarios of an integrated assessment model (IAM), the IMAGE model. Consistent worldwide scenarios from IMAGE are evaluated in the life cycle inventory using ecoinvent v3.3. To test the approach, only the electricity sector was changed in a prospective LCA of an internal combustion engine vehicle (ICEV) and an electric vehicle (EV) using six baseline and mitigation climate scenarios until 2050. This case study shows that changes in the electricity background can be very important for the environmental impacts of EV. Also, the approach demonstrates that the relative environmental performance of EV and ICEV over time is more complex and multifaceted than previously assumed. Uncertainty due to future developments manifests in different impacts depending on the product (EV or ICEV), the impact category, and the scenario and year considered. More robust prospective LCAs can be achieved, particularly for emerging technologies, by expanding this approach to other economic sectors beyond electricity background changes and mobility applications as well as by including uncertainty and changes in foreground parameters. A more systematic and structured composition of future inventory databases driven by IAM scenarios helps to acknowledge epistemological uncertainty and to increase the temporal consistency of foreground and background systems in LCAs of emerging technologies.

Suggested Citation

  • Angelica Mendoza Beltran & Brian Cox & Chris Mutel & Detlef P. van Vuuren & David Font Vivanco & Sebastiaan Deetman & Oreane Y. Edelenbosch & Jeroen Guinée & Arnold Tukker, 2020. "When the Background Matters: Using Scenarios from Integrated Assessment Models in Prospective Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 24(1), pages 64-79, February.
  • Handle: RePEc:bla:inecol:v:24:y:2020:i:1:p:64-79
    DOI: 10.1111/jiec.12825
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12825
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arias, Ana & Nika, Chrysanthi-Elisabeth & Vasilaki, Vasileia & Feijoo, Gumersindo & Moreira, Maria Teresa & Katsou, Evina, 2024. "Assessing the future prospects of emerging technologies for shipping and aviation biofuels: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    2. Martin, Nick & Talens-Peiró, Laura & Villalba-Méndez, Gara & Nebot-Medina, Rafael & Madrid-López, Cristina, 2023. "An energy future beyond climate neutrality: Comprehensive evaluations of transition pathways," Applied Energy, Elsevier, vol. 331(C).
    3. Agnieszka Starzyk & Kinga Rybak-Niedziółka & Przemysław Łacek & Łukasz Mazur & Anna Stefańska & Małgorzata Kurcjusz & Aleksandra Nowysz, 2023. "Environmental and Architectural Solutions in the Problem of Waste Incineration Plants in Poland: A Comparative Analysis," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    4. Joris Šimaitis & Stephen Allen & Christopher Vagg, 2023. "Are future recycling benefits misleading? Prospective life cycle assessment of lithium‐ion batteries," Journal of Industrial Ecology, Yale University, vol. 27(5), pages 1291-1303, October.
    5. Su, Shu & Ju, Jingyi & Guo, Qiyue & Li, Xiaodong & Zhu, Yimin, 2023. "A temporally dynamic model for regional carbon impact assessment based on city information modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Matthias Schlipf & Bastian Striegl & Tobias Gaugler, 2024. "Climate true‐cost analysis of industrial goods and its regulatory implications on value chains and global competition," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 589-602, June.
    7. Shafique, Muhammad & Azam, Anam & Rafiq, Muhammad & Luo, Xiaowei, 2022. "Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong," Research in Transportation Economics, Elsevier, vol. 91(C).
    8. Zacharopoulos, Leon & Thonemann, Nils & Dumeier, Marcel & Geldermann, Jutta, 2023. "Environmental optimization of the charge of battery electric vehicles," Applied Energy, Elsevier, vol. 329(C).
    9. Arjan Kirkels & Vince Evers & Gerrit Muller, 2021. "Systems Engineering for the Energy Transition: Potential Contributions and Limitations," Sustainability, MDPI, vol. 13(10), pages 1-13, May.
    10. Maes, Ben & Sacchi, Romain & Steubing, Bernhard & Pizzol, Massimo & Audenaert, Amaryllis & Craeye, Bart & Buyle, Matthias, 2023. "Prospective consequential life cycle assessment: Identifying the future marginal suppliers using integrated assessment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Talens Peiró, Laura & Martin, Nick & Villalba Méndez, Gara & Madrid-López, Cristina, 2022. "Integration of raw materials indicators of energy technologies into energy system models," Applied Energy, Elsevier, vol. 307(C).
    12. Yang, Xining & Hu, Mingming & Tukker, Arnold & Zhang, Chunbo & Huo, Tengfei & Steubing, Bernhard, 2022. "A bottom-up dynamic building stock model for residential energy transition: A case study for the Netherlands," Applied Energy, Elsevier, vol. 306(PA).
    13. Chris Kennedy & Reid Lifset, 2021. "Winners of the 2020 Graedel prizes: The Journal of Industrial Ecology best paper prizes," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1108-1110, October.
    14. Otavio Cavalett & Marcos D. B. Watanabe & Mari Voldsund & Simon Roussanaly & Francesco Cherubini, 2024. "Paving the way for sustainable decarbonization of the European cement industry," Nature Sustainability, Nature, vol. 7(5), pages 568-580, May.
    15. P. James Joyce & Anna Björklund, 2022. "Futura: A new tool for transparent and shareable scenario analysis in prospective life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 134-144, February.
    16. van den Oever, A.E.M. & Costa, D. & Messagie, M., 2023. "Prospective life cycle assessment of alternatively fueled heavy-duty trucks," Applied Energy, Elsevier, vol. 336(C).
    17. Yang Qiu & Patrick Lamers & Vassilis Daioglou & Noah McQueen & Harmen-Sytze Boer & Mathijs Harmsen & Jennifer Wilcox & André Bardow & Sangwon Suh, 2022. "Environmental trade-offs of direct air capture technologies in climate change mitigation toward 2100," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Xiaoyang Zhong & Mingming Hu & Sebastiaan Deetman & Bernhard Steubing & Hai Xiang Lin & Glenn Aguilar Hernandez & Carina Harpprecht & Chunbo Zhang & Arnold Tukker & Paul Behrens, 2021. "Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    19. Anders Arvesen & Steve Völler & Christine Roxanne Hung & Volker Krey & Magnus Korpås & Anders Hammer Strømman, 2021. "Emissions of electric vehicle charging in future scenarios: The effects of time of charging," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1250-1263, October.
    20. Moritz Ostermann & Julian Grenz & Marcel Triebus & Felipe Cerdas & Thorsten Marten & Thomas Tröster & Christoph Herrmann, 2023. "Integrating Prospective Scenarios in Life Cycle Engineering: Case Study of Lightweight Structures," Energies, MDPI, vol. 16(8), pages 1-24, April.
    21. Carina Harpprecht & Lauran van Oers & Stephen A. Northey & Yongxiang Yang & Bernhard Steubing, 2021. "Environmental impacts of key metals' supply and low‐carbon technologies are likely to decrease in the future," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1543-1559, December.
    22. Martin, Nick & Zinck Thellufsen, Jakob & Chang, Miguel & Talens-Peiró, Laura & Madrid-López, Cristina, 2024. "The many faces of heating transitions. Deeper understandings of future systems in Sweden and beyond," Energy, Elsevier, vol. 290(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:24:y:2020:i:1:p:64-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.