IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v317y2022ics0306261922005529.html
   My bibliography  Save this article

Decarbonization of cement production in a hydrogen economy

Author

Listed:
  • Nhuchhen, Daya R.
  • Sit, Song P.
  • Layzell, David B.

Abstract

The transition to net-zero emission energy systems creates synergistic opportunities across sectors. For example, fuel hydrogen production from water electrolysis generates by-product oxygen that could be used to reduce the cost of carbon capture and storage (CCS) essential in the decarbonization of clinker production in cement making. To assess this opportunity, a techno-economic assessment was carried out for the production of clinker using oxy-combustion in a natural gas-fueled plant coupled to CCS. Material and energy flows were assessed in a reference case for clinker production (oxygen from air, no CCS), and compared to oxy-combustion clinker production from either an air separation unit (ASU, 95% O2), or water electrolysis (100% O2), both coupled to CCS. Compared to the reference, air-combusted clinker plant, oxy-combustion increases thermal energy demand by 7% and electricity demand by 137% for ASU and 67% for electrolytic oxygen. The levelized cost of oxygen supply ranges from $49/tO2 for an on-site ASU to pipelined electrolytic O2 at $35/tO2 (200 km) or $13/t O2 (20 km). The cost of clinker for the reference plant without CCS increases linearly from $84/t clinker to $193/t clinker at a carbon price of $0/tCO2 to $150/tCO2, respectively. With oxy-combustion and CCS, the clinker production cost ranges from $119 to $122/t clinker, reflecting a breakeven carbon price of $39 to $53/tCO2 compared to the reference case. The lower cost for the electrolytic supply of by-product oxygen compared to ASU oxygen must be balanced against the reliability of supply, the pipeline transport distance and the charges that may be added by the hydrogen producer.

Suggested Citation

  • Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Decarbonization of cement production in a hydrogen economy," Applied Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005529
    DOI: 10.1016/j.apenergy.2022.119180
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922005529
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olabi, A.G. & Obaideen, Khaled & Elsaid, Khaled & Wilberforce, Tabbi & Sayed, Enas Taha & Maghrabie, Hussein M. & Abdelkareem, Mohammad Ali, 2022. "Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Towards net-zero emission cement and power production using Molten Carbonate Fuel Cells," Applied Energy, Elsevier, vol. 306(PB).
    3. Parker, Nathan, 2004. "Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs," Institute of Transportation Studies, Working Paper Series qt2gk0j8kq, Institute of Transportation Studies, UC Davis.
    4. Seo, Su Been & Kim, Hyung Woo & Kang, Seo Yeong & Go, Eun Sol & Keel, Sang In & Lee, See Hoon, 2021. "Techno-economic comparison between air-fired and oxy-fuel circulating fluidized bed power plants with ultra-supercritical cycle," Energy, Elsevier, vol. 233(C).
    5. Kato, Takeyoshi & Kubota, Mitsuhiro & Kobayashi, Noriyuki & Suzuoki, Yasuo, 2005. "Effective utilization of by-product oxygen from electrolysis hydrogen production," Energy, Elsevier, vol. 30(14), pages 2580-2595.
    6. Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.
    7. ., 2021. "Political feasibility of ETS," Chapters, in: Carbon Markets Around the Globe, chapter 8, pages 139-151, Edward Elgar Publishing.
    8. Paltsev, Sergey & Morris, Jennifer & Kheshgi, Haroon & Herzog, Howard, 2021. "Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation," Applied Energy, Elsevier, vol. 300(C).
    9. Ebrahimi, Armin & Meratizaman, Mousa & Akbarpour Reyhani, Hamed & Pourali, Omid & Amidpour, Majid, 2015. "Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit," Energy, Elsevier, vol. 90(P2), pages 1298-1316.
    10. Parker, Nathan, 2004. "Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs," Institute of Transportation Studies, Working Paper Series qt9m40m75r, Institute of Transportation Studies, UC Davis.
    11. Ali, M.B. & Saidur, R. & Hossain, M.S., 2011. "A review on emission analysis in cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2252-2261, June.
    12. UNCTAD & World Bank, 2018. "Technology Transfer," World Bank Publications - Reports 29468, The World Bank Group.
    13. Stefania Osk Gardarsdottir & Edoardo De Lena & Matteo Romano & Simon Roussanaly & Mari Voldsund & José-Francisco Pérez-Calvo & David Berstad & Chao Fu & Rahul Anantharaman & Daniel Sutter & Matteo Gaz, 2019. "Comparison of Technologies for CO 2 Capture from Cement Production—Part 2: Cost Analysis," Energies, MDPI, vol. 12(3), pages 1-20, February.
    14. Puig-Arnavat, Maria & Søgaard, Martin & Hjuler, Klaus & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk & Hendriksen, Peter Vang, 2015. "Integration of oxygen membranes for oxygen production in cement plants," Energy, Elsevier, vol. 91(C), pages 852-865.
    15. Bernhard Reinsberg & Centre for Business Research, 2018. "Blockchain Technology and the Governance of Foreign Aid," Working Papers wp505, Centre for Business Research, University of Cambridge.
    16. Granados, D.A. & Chejne, F. & Mejía, J.M., 2015. "Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns," Applied Energy, Elsevier, vol. 158(C), pages 107-117.
    17. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    18. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    19. Rayegan, R. & Tao, Y.X., 2011. "A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs)," Renewable Energy, Elsevier, vol. 36(2), pages 659-670.
    20. Simon Deakin & Christopher Markou & Centre for Business Research, 2018. "The Law-Technology Cycle & the Future of Work," Working Papers wp504, Centre for Business Research, University of Cambridge.
    21. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zezheng & Yu, Pengwei & Xian, Yujiao & Fan, Jing-Li, 2024. "Investment benefit analysis of coal-to-hydrogen coupled CCS technology in China based on real option approach," Energy, Elsevier, vol. 294(C).
    2. Otavio Cavalett & Marcos D. B. Watanabe & Mari Voldsund & Simon Roussanaly & Francesco Cherubini, 2024. "Paving the way for sustainable decarbonization of the European cement industry," Nature Sustainability, Nature, vol. 7(5), pages 568-580, May.
    3. Nehdi, Moncef L. & Marani, Afshin & Zhang, Lei, 2024. "Is net-zero feasible: Systematic review of cement and concrete decarbonization technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Goran Durakovic & Hongyu Zhang & Brage Rugstad Knudsen & Asgeir Tomasgard & Pedro Crespo del Granado, 2023. "Decarbonizing the European energy system in the absence of Russian gas: Hydrogen uptake and carbon capture developments in the power, heat and industry sectors," Papers 2308.08953, arXiv.org.
    5. Martin Greco-Coppi & Carina Hofmann & Diethelm Walter & Jochen Ströhle & Bernd Epple, 2023. "Negative CO2 emissions in the lime production using an indirectly heated carbonate looping process," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(6), pages 1-32, August.
    6. Hosseini Dehshiri, Seyyed Shahabaddin & Firoozabadi, Bahar, 2024. "Wind energy integrated green hydrogen system as sustainable solution to decarbonize Iranian Industrial Cities," Energy, Elsevier, vol. 306(C).
    7. Lifeng Du & Yanmei Yang & Luli Zhou & Min Liu, 2024. "Greenhouse Gas Reduction Potential and Economics of Green Hydrogen via Water Electrolysis: A Systematic Review of Value-Chain-Wide Decarbonization," Sustainability, MDPI, vol. 16(11), pages 1-37, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    2. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    3. Lin, Zhenhong & Fan, Yueyue & Ogden, Joan M & Chen, Chien-Wei, 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California," Institute of Transportation Studies, Working Paper Series qt9mk5n8jn, Institute of Transportation Studies, UC Davis.
    4. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    5. Ben-Ran Fu & Sung-Wei Hsu & Yuh-Ren Lee & Jui-Ching Hsieh & Chia-Ming Chang & Chih-Hsi Liu, 2014. "Performance of a 250 kW Organic Rankine Cycle System for Off-Design Heat Source Conditions," Energies, MDPI, vol. 7(6), pages 1-11, June.
    6. Turi, Davide Maria & Chiesa, Paolo & Macchi, Ennio & Ghoniem, Ahmed F., 2016. "High fidelity model of the oxygen flux across ion transport membrane reactor: Mechanism characterization using experimental data," Energy, Elsevier, vol. 96(C), pages 127-141.
    7. Paltsev, Sergey & Gurgel, Angelo & Morris, Jennifer & Chen, Henry & Dey, Subhrajit & Marwah, Sumita, 2022. "Economic analysis of the hard-to-abate sectors in India," Energy Economics, Elsevier, vol. 112(C).
    8. Calise, Francesco & Dentice d'Accadia, Massimo & Macaluso, Adriano & Vanoli, Laura & Piacentino, Antonio, 2016. "A novel solar-geothermal trigeneration system integrating water desalination: Design, dynamic simulation and economic assessment," Energy, Elsevier, vol. 115(P3), pages 1533-1547.
    9. Francesco Calise & Davide Capuano & Laura Vanoli, 2015. "Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant," Energies, MDPI, vol. 8(4), pages 1-41, April.
    10. Parker, Nathan C, 2007. "Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw," Institute of Transportation Studies, Working Paper Series qt8sp9n37c, Institute of Transportation Studies, UC Davis.
    11. Braimakis, Konstantinos & Karellas, Sotirios, 2018. "Exergetic optimization of double stage Organic Rankine Cycle (ORC)," Energy, Elsevier, vol. 149(C), pages 296-313.
    12. Jarvis, Sean M. & Samsatli, Sheila, 2018. "Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 85(C), pages 46-68.
    13. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    14. Tarufelli, Brittany & Snyder, Brian & Dismukes, David, 2021. "The Potential Impact of the U.S. Carbon Capture and Storage Tax Credit Expansion on the Economic Feasibility of Industrial Carbon Capture and Storage," Energy Policy, Elsevier, vol. 149(C).
    15. Olateju, Babatunde & Kumar, Amit, 2016. "A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands," Energy, Elsevier, vol. 115(P1), pages 604-614.
    16. Zhang, Qi & Liu, Jiangfeng & Wang, Ge & Gao, Zhihui, 2024. "A new optimization model for carbon capture utilization and storage (CCUS) layout based on high-resolution geological variability," Applied Energy, Elsevier, vol. 363(C).
    17. Braimakis, Konstantinos & Preißinger, Markus & Brüggemann, Dieter & Karellas, Sotirios & Panopoulos, Kyriakos, 2015. "Low grade waste heat recovery with subcritical and supercritical Organic Rankine Cycle based on natural refrigerants and their binary mixtures," Energy, Elsevier, vol. 88(C), pages 80-92.
    18. Maraver, Daniel & Royo, Javier & Lemort, Vincent & Quoilin, Sylvain, 2014. "Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications," Applied Energy, Elsevier, vol. 117(C), pages 11-29.
    19. Bondita Robidas & Subrata Borgohain Gogoi, 2024. "Economic analysis of transportation of crude oil of Upper Assam Basin through pipeline," SN Business & Economics, Springer, vol. 4(8), pages 1-30, August.
    20. Varma, G.V. Pradeep & Srinivas, T., 2017. "Power generation from low temperature heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 402-414.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.