IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v9y2024i6d10.1038_s41560-024-01487-w.html
   My bibliography  Save this article

Ion-induced field screening as a dominant factor in perovskite solar cell operational stability

Author

Listed:
  • Jarla Thiesbrummel

    (Universität Potsdam
    University of Oxford)

  • Sahil Shah

    (Universität Potsdam)

  • Emilio Gutierrez-Partida

    (Universität Potsdam)

  • Fengshuo Zu

    (Humboldt-Universität zu Berlin)

  • Francisco Peña-Camargo

    (Universität Potsdam)

  • Stefan Zeiske

    (Swansea University)

  • Jonas Diekmann

    (Universität Potsdam)

  • Fangyuan Ye

    (Universität Potsdam
    East China University of Science and Technology
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Karol P. Peters

    (Universität Potsdam)

  • Kai O. Brinkmann

    (University of Wuppertal)

  • Pietro Caprioglio

    (University of Oxford)

  • Akash Dasgupta

    (University of Oxford)

  • Seongrok Seo

    (University of Oxford)

  • Fatai A. Adeleye

    (Universität Potsdam)

  • Jonathan Warby

    (Universität Potsdam)

  • Quentin Jeangros

    (Centre Suisse d′Électronique et de Microtechnique)

  • Felix Lang

    (Universität Potsdam)

  • Shuo Zhang

    (East China University of Science and Technology)

  • Steve Albrecht

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Thomas Riedl

    (University of Wuppertal)

  • Ardalan Armin

    (Swansea University)

  • Dieter Neher

    (Universität Potsdam)

  • Norbert Koch

    (Humboldt-Universität zu Berlin
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Yongzhen Wu

    (East China University of Science and Technology)

  • Vincent M. Corre

    (Friedrich-Alexander-Universität Erlangen-Nürnberg)

  • Henry Snaith

    (University of Oxford)

  • Martin Stolterfoht

    (Universität Potsdam
    The Chinese University of Hong Kong)

Abstract

The presence of mobile ions in metal halide perovskites has been shown to adversely affect the intrinsic stability of perovskite solar cells (PSCs). However, the actual contribution of mobile ions to the total degradation loss compared with other factors such as trap-assisted recombination remains poorly understood. Here we reveal that mobile ion-induced internal field screening is the dominant factor in the degradation of PSCs under operational conditions. The increased field screening leads to a decrease in the steady-state efficiency, often owing to a large reduction in the current density. Instead, the efficiency at high scan speeds (>1,000 V s−1), where the ions are immobilized, is much less affected. We also show that the bulk and interface quality do not degrade upon ageing, yet the open-circuit voltage decreases owing to an increase in the mobile ion density. This work reveals the importance of ionic losses for intrinsic PSC degradation before chemical or extrinsic mechanical effects manifest.

Suggested Citation

  • Jarla Thiesbrummel & Sahil Shah & Emilio Gutierrez-Partida & Fengshuo Zu & Francisco Peña-Camargo & Stefan Zeiske & Jonas Diekmann & Fangyuan Ye & Karol P. Peters & Kai O. Brinkmann & Pietro Capriogli, 2024. "Ion-induced field screening as a dominant factor in perovskite solar cell operational stability," Nature Energy, Nature, vol. 9(6), pages 664-676, June.
  • Handle: RePEc:nat:natene:v:9:y:2024:i:6:d:10.1038_s41560-024-01487-w
    DOI: 10.1038/s41560-024-01487-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-024-01487-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-024-01487-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastian Reichert & Qingzhi An & Young-Won Woo & Aron Walsh & Yana Vaynzof & Carsten Deibel, 2020. "Probing the ionic defect landscape in halide perovskite solar cells," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. K.O. Brinkmann & J. Zhao & N. Pourdavoud & T. Becker & T. Hu & S. Olthof & K. Meerholz & L. Hoffmann & T. Gahlmann & R. Heiderhoff & M. F. Oszajca & N. A. Luechinger & D. Rogalla & Y. Chen & B. Cheng , 2017. "Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    3. Yehao Deng & Shuang Xu & Shangshang Chen & Xun Xiao & Jingjing Zhao & Jinsong Huang, 2021. "Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability," Nature Energy, Nature, vol. 6(6), pages 633-641, June.
    4. Philip Calado & Andrew M. Telford & Daniel Bryant & Xiaoe Li & Jenny Nelson & Brian C. O’Regan & Piers R.F. Barnes, 2016. "Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    5. Lei Meng & Jingbi You & Yang Yang, 2018. "Addressing the stability issue of perovskite solar cells for commercial applications," Nature Communications, Nature, vol. 9(1), pages 1-4, December.
    6. G. Grancini & C. Roldán-Carmona & I. Zimmermann & E. Mosconi & X. Lee & D. Martineau & S. Narbey & F. Oswald & F. De Angelis & M. Graetzel & Mohammad Khaja Nazeeruddin, 2017. "One-Year stable perovskite solar cells by 2D/3D interface engineering," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    7. Martin Stolterfoht & Christian M. Wolff & José A. Márquez & Shanshan Zhang & Charles J. Hages & Daniel Rothhardt & Steve Albrecht & Paul L. Burn & Paul Meredith & Thomas Unold & Dieter Neher, 2018. "Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells," Nature Energy, Nature, vol. 3(10), pages 847-854, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangyuan Ye & Shuo Zhang & Jonathan Warby & Jiawei Wu & Emilio Gutierrez-Partida & Felix Lang & Sahil Shah & Elifnaz Saglamkaya & Bowen Sun & Fengshuo Zu & Safa Shoaee & Haifeng Wang & Burkhard Stille, 2022. "Overcoming C60-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Rodolfo López-Vicente & José Abad & Javier Padilla & Antonio Urbina, 2021. "Assessment of Molecular Additives on the Lifetime of Carbon-Based Mesoporous Perovskite Solar Cells," Energies, MDPI, vol. 14(7), pages 1-12, April.
    3. Stefania Cacovich & Guillaume Vidon & Matteo Degani & Marie Legrand & Laxman Gouda & Jean-Baptiste Puel & Yana Vaynzof & Jean-François Guillemoles & Daniel Ory & Giulia Grancini, 2022. "Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Thibault Lemercier & Lara Perrin & Emilie Planès & Solenn Berson & Lionel Flandin, 2020. "A Comparison of the Structure and Properties of Opaque and Semi-Transparent NIP/PIN-Type Scalable Perovskite Solar Cells," Energies, MDPI, vol. 13(15), pages 1-18, July.
    5. Sajid, Sajid & Huang, Hao & Ji, Jun & Jiang, Haoran & Duan, Mingjun & Liu, Xin & Liu, Benyu & Li, Meicheng, 2021. "Quest for robust electron transporting materials towards efficient, hysteresis-free and stable perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Taewan Kim & Jongchul Lim & Seulki Song, 2020. "Recent Progress and Challenges of Electron Transport Layers in Organic–Inorganic Perovskite Solar Cells," Energies, MDPI, vol. 13(21), pages 1-16, October.
    7. Simone M. P. Meroni & Carys Worsley & Dimitrios Raptis & Trystan M. Watson, 2021. "Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications," Energies, MDPI, vol. 14(2), pages 1-37, January.
    8. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    9. Rashmi Mehrotra & Dongrak Oh & Ji-Wook Jang, 2021. "Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    11. Nieto-Díaz, Balder A. & Crossland, Andrew F. & Groves, Christopher, 2021. "A levelized cost of energy approach to select and optimise emerging PV technologies: The relative impact of degradation, cost and initial efficiency," Applied Energy, Elsevier, vol. 299(C).
    12. Xiaoming Zhao & Melissa L. Ball & Arvin Kakekhani & Tianran Liu & Andrew M. Rappe & Yueh-Lin Loo, 2022. "A charge transfer framework that describes supramolecular interactions governing structure and properties of 2D perovskites," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Raman, Rohith Kumar & Gurusamy Thangavelu, Senthil A. & Venkataraj, Selvaraj & Krishnamoorthy, Ananthanarayanan, 2021. "Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Pengju Shi & Jiazhe Xu & Ilhan Yavuz & Tianyi Huang & Shaun Tan & Ke Zhao & Xu Zhang & Yuan Tian & Sisi Wang & Wei Fan & Yahui Li & Donger Jin & Xuemeng Yu & Chenyue Wang & Xingyu Gao & Zhong Chen & E, 2024. "Strain regulates the photovoltaic performance of thick-film perovskites," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Soonil Hong & Jinho Lee, 2022. "Recent Advances and Challenges toward Efficient Perovskite/Organic Integrated Solar Cells," Energies, MDPI, vol. 16(1), pages 1-19, December.
    16. Dejian Yu & Fei Cao & Jinfeng Liao & Bingzhe Wang & Chenliang Su & Guichuan Xing, 2022. "Direct observation of photoinduced carrier blocking in mixed-dimensional 2D/3D perovskites and the origin," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Vasiliki Paraskeva & Maria Hadjipanayi & Matthew Norton & Aranzazu Aguirre & Afshin Hadipour & Wenya Song & Tommaso Fontanot & Silke Christiansen & Rita Ebner & George E. Georghiou, 2023. "Long-Term Outdoor Testing of Perovskite Mini-Modules: Effects of FACl Additives," Energies, MDPI, vol. 16(6), pages 1-18, March.
    18. Jin Wen & Yicheng Zhao & Pu Wu & Yuxuan Liu & Xuntian Zheng & Renxing Lin & Sushu Wan & Ke Li & Haowen Luo & Yuxi Tian & Ludong Li & Hairen Tan, 2023. "Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Julian A. Steele & Tom Braeckevelt & Vittal Prakasam & Giedrius Degutis & Haifeng Yuan & Handong Jin & Eduardo Solano & Pascal Puech & Shreya Basak & Maria Isabel Pintor-Monroy & Hans Gorp & Guillaume, 2022. "An embedded interfacial network stabilizes inorganic CsPbI3 perovskite thin films," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Krebs-Moberg, Miles & Pitz, Mandy & Dorsette, Tiara L. & Gheewala, Shabbir H., 2021. "Third generation of photovoltaic panels: A life cycle assessment," Renewable Energy, Elsevier, vol. 164(C), pages 556-565.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:9:y:2024:i:6:d:10.1038_s41560-024-01487-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.