IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v6y2021i6d10.1038_s41560-021-00831-8.html
   My bibliography  Save this article

Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability

Author

Listed:
  • Yehao Deng

    (University of North Carolina at Chapel Hill
    Perotech Inc)

  • Shuang Xu

    (University of North Carolina at Chapel Hill)

  • Shangshang Chen

    (University of North Carolina at Chapel Hill)

  • Xun Xiao

    (University of North Carolina at Chapel Hill)

  • Jingjing Zhao

    (University of North Carolina at Chapel Hill)

  • Jinsong Huang

    (University of North Carolina at Chapel Hill)

Abstract

Formamidinium–caesium mixed-cation perovskites have shown better thermal stability than their methylammonium-containing counterparts but they suffer from photoinstability induced by iodide migration and phase segregation. Here we improve their photostability by adding slightly excessive AX (at a molar percentage of 0.25% to Pb2+ ions), where A is formamidinium or caesium and X is iodine. The excessive AX does not improve the initial solar cell efficiency. It compensates iodide vacancies and suppresses ion migration and defects generation during long-term illumination by around tenfold compared with AX-deficient devices. Consequently, generation of hole traps and phase segregation is impeded, with the former limiting solar cell efficiency after degradation. The perovskite mini-modules reached a certified stabilized efficiency of 18.6% with an aperture area of ~30 cm2, corresponding to an active area efficiency of 20.2%. The mini-module maintains 93.6% of the initial efficiency after continuous operation under 1 sun illumination for >1,000 h at 50 ± 5 °C in air.

Suggested Citation

  • Yehao Deng & Shuang Xu & Shangshang Chen & Xun Xiao & Jingjing Zhao & Jinsong Huang, 2021. "Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability," Nature Energy, Nature, vol. 6(6), pages 633-641, June.
  • Handle: RePEc:nat:natene:v:6:y:2021:i:6:d:10.1038_s41560-021-00831-8
    DOI: 10.1038/s41560-021-00831-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-021-00831-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-021-00831-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Wen & Yicheng Zhao & Pu Wu & Yuxuan Liu & Xuntian Zheng & Renxing Lin & Sushu Wan & Ke Li & Haowen Luo & Yuxi Tian & Ludong Li & Hairen Tan, 2023. "Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Soonil Hong & Jinho Lee, 2022. "Recent Advances and Challenges toward Efficient Perovskite/Organic Integrated Solar Cells," Energies, MDPI, vol. 16(1), pages 1-19, December.
    3. Haitao Zhou & Kai Cai & Shiqi Yu & Zhenhan Wang & Zhuang Xiong & Zema Chu & Xinbo Chu & Qi Jiang & Jingbi You, 2024. "Efficient and stable perovskite mini-module via high-quality homogeneous perovskite crystallization and improved interconnect," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Jarla Thiesbrummel & Sahil Shah & Emilio Gutierrez-Partida & Fengshuo Zu & Francisco Peña-Camargo & Stefan Zeiske & Jonas Diekmann & Fangyuan Ye & Karol P. Peters & Kai O. Brinkmann & Pietro Capriogli, 2024. "Ion-induced field screening as a dominant factor in perovskite solar cell operational stability," Nature Energy, Nature, vol. 9(6), pages 664-676, June.
    5. Hasitha C. Weerasinghe & Nasiruddin Macadam & Jueng-Eun Kim & Luke J. Sutherland & Dechan Angmo & Leonard W. T. Ng & Andrew D. Scully & Fiona Glenn & Regine Chantler & Nathan L. Chang & Mohammad Dehgh, 2024. "The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Vasiliki Paraskeva & Maria Hadjipanayi & Matthew Norton & Aranzazu Aguirre & Afshin Hadipour & Wenya Song & Tommaso Fontanot & Silke Christiansen & Rita Ebner & George E. Georghiou, 2023. "Long-Term Outdoor Testing of Perovskite Mini-Modules: Effects of FACl Additives," Energies, MDPI, vol. 16(6), pages 1-18, March.
    7. Shuxian Du & Hao Huang & Zhineng Lan & Peng Cui & Liang Li & Min Wang & Shujie Qu & Luyao Yan & Changxu Sun & Yingying Yang & Xinxin Wang & Meicheng Li, 2024. "Inhibiting perovskite decomposition by a creeper-inspired strategy enables efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:6:y:2021:i:6:d:10.1038_s41560-021-00831-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.