IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21316-y.html
   My bibliography  Save this article

Strain wave pathway to semiconductor-to-metal transition revealed by time-resolved X-ray powder diffraction

Author

Listed:
  • C. Mariette

    (Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251)

  • M. Lorenc

    (Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251)

  • H. Cailleau

    (Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251)

  • E. Collet

    (Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251)

  • L. Guérin

    (Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251)

  • A. Volte

    (Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251)

  • E. Trzop

    (Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251)

  • R. Bertoni

    (Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251)

  • X. Dong

    (Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251)

  • B. Lépine

    (Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251)

  • O. Hernandez

    (Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226)

  • E. Janod

    (Université de Nantes, CNRS)

  • L. Cario

    (Université de Nantes, CNRS)

  • V. Ta Phuoc

    (GREMAN—UMR 7347 CNRS, Université de Tours)

  • S. Ohkoshi

    (The University of Tokyo)

  • H. Tokoro

    (The University of Tokyo
    University of Tsukuba)

  • L. Patthey

    (SwissFEL, Paul Scherrer Institut)

  • A. Babic

    (SwissFEL, Paul Scherrer Institut)

  • I. Usov

    (SwissFEL, Paul Scherrer Institut)

  • D. Ozerov

    (SwissFEL, Paul Scherrer Institut)

  • L. Sala

    (SwissFEL, Paul Scherrer Institut)

  • S. Ebner

    (SwissFEL, Paul Scherrer Institut)

  • P. Böhler

    (SwissFEL, Paul Scherrer Institut)

  • A. Keller

    (SwissFEL, Paul Scherrer Institut)

  • A. Oggenfuss

    (SwissFEL, Paul Scherrer Institut)

  • T. Zmofing

    (SwissFEL, Paul Scherrer Institut)

  • S. Redford

    (SwissFEL, Paul Scherrer Institut)

  • S. Vetter

    (SwissFEL, Paul Scherrer Institut)

  • R. Follath

    (SwissFEL, Paul Scherrer Institut)

  • P. Juranic

    (SwissFEL, Paul Scherrer Institut)

  • A. Schreiber

    (SwissFEL, Paul Scherrer Institut)

  • P. Beaud

    (SwissFEL, Paul Scherrer Institut)

  • V. Esposito

    (SwissFEL, Paul Scherrer Institut
    Stanford University and SLAC National Accelerator Laboratory)

  • Y. Deng

    (SwissFEL, Paul Scherrer Institut)

  • G. Ingold

    (SwissFEL, Paul Scherrer Institut)

  • M. Chergui

    (Laboratory of Ultrafast Spectroscopy, Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne)

  • G. F. Mancini

    (SwissFEL, Paul Scherrer Institut
    Laboratory of Ultrafast Spectroscopy, Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne)

  • R. Mankowsky

    (SwissFEL, Paul Scherrer Institut)

  • C. Svetina

    (SwissFEL, Paul Scherrer Institut)

  • S. Zerdane

    (SwissFEL, Paul Scherrer Institut)

  • A. Mozzanica

    (SwissFEL, Paul Scherrer Institut)

  • A. Bosak

    (European Synchrotron Radiation Facility)

  • M. Wulff

    (European Synchrotron Radiation Facility)

  • M. Levantino

    (European Synchrotron Radiation Facility)

  • H. Lemke

    (SwissFEL, Paul Scherrer Institut)

  • M. Cammarata

    (Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251
    European Synchrotron Radiation Facility)

Abstract

One of the main challenges in ultrafast material science is to trigger phase transitions with short pulses of light. Here we show how strain waves, launched by electronic and structural precursor phenomena, determine a coherent macroscopic transformation pathway for the semiconducting-to-metal transition in bistable Ti3O5 nanocrystals. Employing femtosecond powder X-ray diffraction, we measure the lattice deformation in the phase transition as a function of time. We monitor the early intra-cell distortion around the light absorbing metal dimer and the long range deformations governed by acoustic waves propagating from the laser-exposed Ti3O5 surface. We developed a simplified elastic model demonstrating that picosecond switching in nanocrystals happens concomitantly with the propagating acoustic wavefront, several decades faster than thermal processes governed by heat diffusion.

Suggested Citation

  • C. Mariette & M. Lorenc & H. Cailleau & E. Collet & L. Guérin & A. Volte & E. Trzop & R. Bertoni & X. Dong & B. Lépine & O. Hernandez & E. Janod & L. Cario & V. Ta Phuoc & S. Ohkoshi & H. Tokoro & L. , 2021. "Strain wave pathway to semiconductor-to-metal transition revealed by time-resolved X-ray powder diffraction," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21316-y
    DOI: 10.1038/s41467-021-21316-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21316-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21316-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marius Hervé & Gaël Privault & Elzbieta Trzop & Shintaro Akagi & Yves Watier & Serhane Zerdane & Ievgeniia Chaban & Ricardo G. Torres Ramírez & Celine Mariette & Alix Volte & Marco Cammarata & Matteo , 2024. "Ultrafast and persistent photoinduced phase transition at room temperature monitored by streaming powder diffraction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Mingfeng Liu & Jiantao Wang & Junwei Hu & Peitao Liu & Haiyang Niu & Xuexi Yan & Jiangxu Li & Haile Yan & Bo Yang & Yan Sun & Chunlin Chen & Georg Kresse & Liang Zuo & Xing-Qiu Chen, 2024. "Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yifeng Jiang & Stuart Hayes & Simon Bittmann & Antoine Sarracini & Lai Chung Liu & Henrike M. Müller-Werkmeister & Atsuhiro Miyawaki & Masaki Hada & Shinnosuke Nakano & Ryoya Takahashi & Samiran Banu , 2024. "Direct observation of photoinduced sequential spin transition in a halogen-bonded hybrid system by complementary ultrafast optical and electron probes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21316-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.