IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35972-9.html
   My bibliography  Save this article

Direct observation of cation diffusion driven surface reconstruction at van der Waals gaps

Author

Listed:
  • Wenjun Cui

    (Wuhan University of Technology
    Wuhan University of Technology)

  • Weixiao Lin

    (Wuhan University of Technology
    Wuhan University of Technology)

  • Weichao Lu

    (Wuhan University of Technology
    Wuhan University of Technology)

  • Chengshan Liu

    (Wuhan University of Technology)

  • Zhixiao Gao

    (China University of Petroleum (East China))

  • Hao Ma

    (China University of Petroleum (East China))

  • Wen Zhao

    (China University of Petroleum (East China))

  • Gustaaf Tendeloo

    (Wuhan University of Technology
    University of Antwerp)

  • Wenyu Zhao

    (Wuhan University of Technology)

  • Qingjie Zhang

    (Wuhan University of Technology)

  • Xiahan Sang

    (Wuhan University of Technology
    Wuhan University of Technology)

Abstract

Weak interlayer van der Waals (vdW) bonding has significant impact on the surface/interface structure, electronic properties, and transport properties of vdW layered materials. Unraveling the complex atomistic dynamics and structural evolution at vdW surfaces is therefore critical for the design and synthesis of the next-generation vdW layered materials. Here, we show that Ge/Bi cation diffusion along the vdW gap in layered GeBi2Te4 (GBT) can be directly observed using in situ heating scanning transmission electron microscopy (STEM). The cation concentration variation during diffusion was correlated with the local Te6 octahedron distortion based on a quantitative analysis of the atomic column intensity and position in time-elapsed STEM images. The in-plane cation diffusion leads to out-of-plane surface etching through complex structural evolutions involving the formation and propagation of a non-centrosymmetric GeTe2 triple layer surface reconstruction on fresh vdW surfaces, and GBT subsurface reconstruction from a septuple layer to a quintuple layer. Our results provide atomistic insight into the cation diffusion and surface reconstruction in vdW layered materials.

Suggested Citation

  • Wenjun Cui & Weixiao Lin & Weichao Lu & Chengshan Liu & Zhixiao Gao & Hao Ma & Wen Zhao & Gustaaf Tendeloo & Wenyu Zhao & Qingjie Zhang & Xiahan Sang, 2023. "Direct observation of cation diffusion driven surface reconstruction at van der Waals gaps," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35972-9
    DOI: 10.1038/s41467-023-35972-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35972-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35972-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hai Xu & Shuanglong Liu & Zijing Ding & Sherman J. R. Tan & Kah Meng Yam & Yang Bao & Chang Tai Nai & Man-Fai Ng & Jiong Lu & Chun Zhang & Kian Ping Loh, 2016. "Oscillating edge states in one-dimensional MoS2 nanowires," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    2. A. K. Geim & I. V. Grigorieva, 2013. "Van der Waals heterostructures," Nature, Nature, vol. 499(7459), pages 419-425, July.
    3. Janne Kalikka & Xilin Zhou & Eric Dilcher & Simon Wall & Ju Li & Robert E. Simpson, 2016. "Strain-engineered diffusive atomic switching in two-dimensional crystals," Nature Communications, Nature, vol. 7(1), pages 1-8, September.
    4. Lianfeng Zou & Jonathan Li & Dmitri Zakharov & Eric A. Stach & Guangwen Zhou, 2017. "In situ atomic-scale imaging of the metal/oxide interfacial transformation," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    5. Chao Zhu & Suxia Liang & Erhong Song & Yuanjun Zhou & Wen Wang & Feng Shan & Yantao Shi & Ce Hao & Kuibo Yin & Tong Zhang & Jianjun Liu & Haimei Zheng & Litao Sun, 2018. "In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    6. Xiahan Sang & Yu Xie & Dundar E. Yilmaz & Roghayyeh Lotfi & Mohamed Alhabeb & Alireza Ostadhossein & Babak Anasori & Weiwei Sun & Xufan Li & Kai Xiao & Paul R. C. Kent & Adri C. T. van Duin & Yury Gog, 2018. "In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    7. Kwanpyo Kim & Sinisa Coh & C Kisielowski & M. F. Crommie & Steven G. Louie & Marvin L. Cohen & A. Zettl, 2013. "Atomically perfect torn graphene edges and their reversible reconstruction," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    8. K. S. Novoselov & A. K. Geim & S. V. Morozov & D. Jiang & M. I. Katsnelson & I. V. Grigorieva & S. V. Dubonos & A. A. Firsov, 2005. "Two-dimensional gas of massless Dirac fermions in graphene," Nature, Nature, vol. 438(7065), pages 197-200, November.
    9. Gábor Zsolt Magda & Xiaozhan Jin & Imre Hagymási & Péter Vancsó & Zoltán Osváth & Péter Nemes-Incze & Chanyong Hwang & László P. Biró & Levente Tapasztó, 2014. "Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons," Nature, Nature, vol. 514(7524), pages 608-611, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Anffany Chen & Hauke Brand & Tobias Helbig & Tobias Hofmann & Stefan Imhof & Alexander Fritzsche & Tobias Kießling & Alexander Stegmaier & Lavi K. Upreti & Titus Neupert & Tomáš Bzdušek & Martin Greit, 2023. "Hyperbolic matter in electrical circuits with tunable complex phases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Anh-Luan Phan & Dai-Nam Le, 2021. "Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-16, August.
    5. Benjamin Carey & Nils Kolja Wessling & Paul Steeger & Robert Schmidt & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ashish Arora, 2024. "Giant Faraday rotation in atomically thin semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Yuri Saida & Thomas Gauthier & Hiroo Suzuki & Satoshi Ohmura & Ryo Shikata & Yui Iwasaki & Godai Noyama & Misaki Kishibuchi & Yuichiro Tanaka & Wataru Yajima & Nicolas Godin & Gaël Privault & Tomoharu, 2024. "Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Wang, Qing & Han, Ning & Bokhari, Awais & Li, Xue & Cao, Yue & Asif, Saira & Shen, Zhengfeng & Si, Weimeng & Wang, Fagang & Klemeš, Jiří Jaromír & Zhao, Xiaolin, 2022. "Insights into MXenes-based electrocatalysts for oxygen reduction," Energy, Elsevier, vol. 255(C).
    8. Ying-Xin Ma & Xue-Dong Wang, 2024. "Directional self-assembly of organic vertically superposed nanowires," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Di Molfetta, Giuseppe & Brachet, Marc & Debbasch, Fabrice, 2014. "Quantum walks in artificial electric and gravitational fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 157-168.
    10. Kai Fan & Heng Jin & Bing Huang & Guijing Duan & Rong Yu & Zhen-Yu Liu & Hui-Nan Xia & Li-Si Liu & Yao Zhang & Tao Xie & Qiao-Yin Tang & Gang Chen & Wen-Hao Zhang & F. C. Chen & X. Luo & W. J. Lu & Y., 2024. "Artificial superconducting Kondo lattice in a van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Bum Chul Park & Min Jun Ko & Young Kwang Kim & Gyu Won Kim & Myeong Soo Kim & Thomas Myeongseok Koo & Hong En Fu & Young Keun Kim, 2022. "Surface-ligand-induced crystallographic disorder–order transition in oriented attachment for the tuneable assembly of mesocrystals," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Cosme G. Ayani & Michele Pisarra & Iván M. Ibarburu & Clara Rebanal & Manuela Garnica & Fabián Calleja & Fernando Martín & Amadeo L. Vázquez de Parga, 2024. "Electron delocalization in a 2D Mott insulator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Cheng Hu & Jiajun Chen & Xianliang Zhou & Yufeng Xie & Xinyue Huang & Zhenghan Wu & Saiqun Ma & Zhichun Zhang & Kunqi Xu & Neng Wan & Yueheng Zhang & Qi Liang & Zhiwen Shi, 2024. "Collapse of carbon nanotubes due to local high-pressure from van der Waals encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Eli Gerber & Steven B. Torrisi & Sara Shabani & Eric Seewald & Jordan Pack & Jennifer E. Hoffman & Cory R. Dean & Abhay N. Pasupathy & Eun-Ah Kim, 2023. "High-throughput ab initio design of atomic interfaces using InterMatch," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Qiang Gao & Jin Mo Bok & Ping Ai & Jing Liu & Hongtao Yan & Xiangyu Luo & Yongqing Cai & Cong Li & Yang Wang & Chaohui Yin & Hao Chen & Genda Gu & Fengfeng Zhang & Feng Yang & Shenjin Zhang & Qinjun P, 2024. "ARPES detection of superconducting gap sign in unconventional superconductors," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Yu Ji & Guang-Ping Hao & Yong-Tao Tan & Wenqi Xiong & Yu Liu & Wenzhe Zhou & Dai-Ming Tang & Renzhi Ma & Shengjun Yuan & Takayoshi Sasaki & Marcelo Lozada-Hidalgo & Andre K. Geim & Pengzhan Sun, 2024. "High proton conductivity through angstrom-porous titania," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Juntao Zhang & Xiaozhi Liu & Yujin Ji & Xuerui Liu & Dong Su & Zhongbin Zhuang & Yu-Chung Chang & Chih-Wen Pao & Qi Shao & Zhiwei Hu & Xiaoqing Huang, 2023. "Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Cao, Rui-rui & Li, Xuan & Chen, Sai & Yuan, Hao-ran & Zhang, Xing-xiang, 2017. "Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites," Energy, Elsevier, vol. 138(C), pages 157-166.
    19. Bohayra Mortazavi & Timon Rabczuk, 2018. "Boron Monochalcogenides; Stable and Strong Two-Dimensional Wide Band-Gap Semiconductors," Energies, MDPI, vol. 11(6), pages 1-10, June.
    20. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35972-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.