IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56880-0.html
   My bibliography  Save this article

Nuclear position controls the activity of cortical actomyosin networks powering simultaneous morphogenetic events

Author

Listed:
  • Nicolas Roby

    (iBV)

  • Matteo Rauzi

    (iBV)

Abstract

Tissue morphogenesis shapes epithelial sheets via cell remodelling to form functional living organisms. While the mechanisms underlying single morphogenetic events are well studied, how one tissue undergoes multiple concomitant shape changes remains largely unexplored. To tackle this, we study the process of simultaneous mesoderm folding and extension in the gastrulating Drosophila embryo. This composite transformation relies on a sharply timed reorganization of the cortical actomyosin network into two distinct subcellular tiers to drive concomitant cell apical constriction and lateral intercalation for tissue folding and convergence-extension, respectively. Here we elucidate the spatio-temporal control of the two-tiered actomyosin network. We show that, within the geometric constraints imposed by the columnar shape of mesoderm epithelial cells, the nucleus acts as a barrier shielding the lateral cortex from interactions with the microtubule network, thereby regulating the distribution of the key signalling molecule RhoGEF2. The relocation of the nucleus, driven by the contraction of the first actomyosin tier and the resulting cytoplasmic flow, unshields the lateral cortex for RhoGEF2 delivery to direct the stereotypic formation of the second tier. Thus, the nucleus and its position function as a spatio-temporal cytoskeleton compartmentalizer establishing a modular scaffold powering multiple simultaneous cell remodeling for composite morphogenesis.

Suggested Citation

  • Nicolas Roby & Matteo Rauzi, 2025. "Nuclear position controls the activity of cortical actomyosin networks powering simultaneous morphogenetic events," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56880-0
    DOI: 10.1038/s41467-025-56880-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56880-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56880-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julien Fierling & Alphy John & Barthélémy Delorme & Alexandre Torzynski & Guy B. Blanchard & Claire M. Lye & Anna Popkova & Grégoire Malandain & Bénédicte Sanson & Jocelyn Étienne & Philippe Marmottan, 2022. "Embryo-scale epithelial buckling forms a propagating furrow that initiates gastrulation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Emiliano Izquierdo & Theresa Quinkler & Stefano De Renzis, 2018. "Guided morphogenesis through optogenetic activation of Rho signalling during early Drosophila embryogenesis," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    3. Adam C. Martin & Matthias Kaschube & Eric F. Wieschaus, 2009. "Pulsed contractions of an actin–myosin network drive apical constriction," Nature, Nature, vol. 457(7228), pages 495-499, January.
    4. Sanjay Karki & Mehdi Saadaoui & Valentin Dunsing & Stephen Kerridge & Elise Silva & Jean-Marc Philippe & Cédric Maurange & Thomas Lecuit, 2023. "Serotonin signaling regulates actomyosin contractility during morphogenesis in evolutionarily divergent lineages," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Darren Gilmour & Martina Rembold & Maria Leptin, 2017. "From morphogen to morphogenesis and back," Nature, Nature, vol. 541(7637), pages 311-320, January.
    6. Nicolas Tissot & Jean-Antoine Lepesant & Fred Bernard & Kevin Legent & Floris Bosveld & Charlotte Martin & Orestis Faklaris & Yohanns Bellaïche & Maïté Coppey & Antoine Guichet, 2017. "Distinct molecular cues ensure a robust microtubule-dependent nuclear positioning in the Drosophila oocyte," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannah J. Gustafson & Nikolas Claussen & Stefano Renzis & Sebastian J. Streichan, 2022. "Patterned mechanical feedback establishes a global myosin gradient," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Sijia Zhou & Peng Li & Jiaying Liu & Juan Liao & Hao Li & Lin Chen & Zhihua Li & Qiongyu Guo & Karine Belguise & Bin Yi & Xiaobo Wang, 2022. "Two Rac1 pools integrate the direction and coordination of collective cell migration," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    3. Aurélien Villedieu & Lale Alpar & Isabelle Gaugué & Amina Joudat & François Graner & Floris Bosveld & Yohanns Bellaïche, 2023. "Homeotic compartment curvature and tension control spatiotemporal folding dynamics," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Alexis Villars & Alexis Matamoro-Vidal & Florence Levillayer & Romain Levayer, 2022. "Microtubule disassembly by caspases is an important rate-limiting step of cell extrusion," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Shun Li & Zong-Yuan Liu & Hao Li & Sijia Zhou & Jiaying Liu & Ningwei Sun & Kai-Fu Yang & Vanessa Dougados & Thomas Mangeat & Karine Belguise & Xi-Qiao Feng & Yiyao Liu & Xiaobo Wang, 2024. "Basal actomyosin pulses expand epithelium coordinating cell flattening and tissue elongation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    6. Kei Yamamoto & Haruko Miura & Motohiko Ishida & Yusuke Mii & Noriyuki Kinoshita & Shinji Takada & Naoto Ueno & Satoshi Sawai & Yohei Kondo & Kazuhiro Aoki, 2021. "Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Amrita Singh & Sameedha Thale & Tobias Leibner & Lucas Lamparter & Andrea Ricker & Harald Nüsse & Jürgen Klingauf & Milos Galic & Mario Ohlberger & Maja Matis, 2024. "Dynamic interplay of microtubule and actomyosin forces drive tissue extension," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Anchel de Jaime-Soguero & Janina Hattemer & Anja Bufe & Alexander Haas & Jeroen Berg & Vincent Batenburg & Biswajit Das & Barbara Marco & Stefania Androulaki & Nicolas Böhly & Jonathan J. M. Landry & , 2024. "Developmental signals control chromosome segregation fidelity during pluripotency and neurogenesis by modulating replicative stress," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    9. Julien Fierling & Alphy John & Barthélémy Delorme & Alexandre Torzynski & Guy B. Blanchard & Claire M. Lye & Anna Popkova & Grégoire Malandain & Bénédicte Sanson & Jocelyn Étienne & Philippe Marmottan, 2022. "Embryo-scale epithelial buckling forms a propagating furrow that initiates gastrulation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Ngoc Minh Nguyen & Emmanuel Farge, 2024. "Mechanical induction in metazoan development and evolution: from earliest multi-cellular organisms to modern animal embryos," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Guilherme Ventura & Aboutaleb Amiri & Raghavan Thiagarajan & Mari Tolonen & Amin Doostmohammadi & Jakub Sedzinski, 2022. "Multiciliated cells use filopodia to probe tissue mechanics during epithelial integration in vivo," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Guillermo Martínez-Ara & Núria Taberner & Mami Takayama & Elissavet Sandaltzopoulou & Casandra E. Villava & Miquel Bosch-Padrós & Nozomu Takata & Xavier Trepat & Mototsugu Eiraku & Miki Ebisuya, 2022. "Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Lijuan Du & Alex Sohr & Yujia Li & Sougata Roy, 2022. "GPI-anchored FGF directs cytoneme-mediated bidirectional contacts to regulate its tissue-specific dispersion," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. Jiaxi Zhao & Nicholas C. Lammers & Simon Alamos & Yang Joon Kim & Gabriella Martini & Hernan G. Garcia, 2024. "Optogenetic dissection of transcriptional repression in a multicellular organism," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Aki Teranishi & Misato Mori & Rihoko Ichiki & Satoshi Toda & Go Shioi & Satoru Okuda, 2024. "An actin bracket-induced elastoplastic transition determines epithelial folding irreversibility," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Miho Matsuda & Jan Rozman & Sassan Ostvar & Karen E. Kasza & Sergei Y. Sokol, 2023. "Mechanical control of neural plate folding by apical domain alteration," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Bibi Najma & Minu Varghese & Lev Tsidilkovski & Linnea Lemma & Aparna Baskaran & Guillaume Duclos, 2022. "Competing instabilities reveal how to rationally design and control active crosslinked gels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Natalia M. Ziojła & Magdalena Socha & M. Cecilia Guerra & Dorota Kizewska & Katarzyna Blaszczyk & Edyta Urbaniak & Sara Henry & Malgorzata Grabowska & Kathy K. Niakan & Aryeh Warmflash & Malgorzata Bo, 2025. "ETVs dictate hPSC differentiation by tuning biophysical properties," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    19. Ariadna Marín-Llauradó & Sohan Kale & Adam Ouzeri & Tom Golde & Raimon Sunyer & Alejandro Torres-Sánchez & Ernest Latorre & Manuel Gómez-González & Pere Roca-Cusachs & Marino Arroyo & Xavier Trepat, 2023. "Mapping mechanical stress in curved epithelia of designed size and shape," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Özge Özgüç & Ludmilla de Plater & Varun Kapoor & Anna Francesca Tortorelli & Andrew G Clark & Jean-Léon Maître, 2022. "Cortical softening elicits zygotic contractility during mouse preimplantation development," PLOS Biology, Public Library of Science, vol. 20(3), pages 1-23, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56880-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.