IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27458-3.html
   My bibliography  Save this article

Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis

Author

Listed:
  • Kei Yamamoto

    (National Institutes of Natural Sciences
    National Institutes of Natural Sciences
    SOKENDAI (The Graduate University for Advanced Studies))

  • Haruko Miura

    (National Institutes of Natural Sciences
    National Institutes of Natural Sciences)

  • Motohiko Ishida

    (University of Tokyo
    Universal Biology Institute, University of Tokyo)

  • Yusuke Mii

    (National Institutes of Natural Sciences
    National Institutes of Natural Sciences
    SOKENDAI (The Graduate University for Advanced Studies)
    Japan Science and Technology Agency (JST), PRESTO)

  • Noriyuki Kinoshita

    (National Institutes of Natural Sciences
    SOKENDAI (The Graduate University for Advanced Studies))

  • Shinji Takada

    (National Institutes of Natural Sciences
    National Institutes of Natural Sciences
    SOKENDAI (The Graduate University for Advanced Studies))

  • Naoto Ueno

    (National Institutes of Natural Sciences
    SOKENDAI (The Graduate University for Advanced Studies)
    National Institutes of Natural Sciences)

  • Satoshi Sawai

    (University of Tokyo
    Universal Biology Institute, University of Tokyo)

  • Yohei Kondo

    (National Institutes of Natural Sciences
    National Institutes of Natural Sciences
    SOKENDAI (The Graduate University for Advanced Studies))

  • Kazuhiro Aoki

    (National Institutes of Natural Sciences
    National Institutes of Natural Sciences
    SOKENDAI (The Graduate University for Advanced Studies)
    National Institutes of Natural Sciences)

Abstract

Actomyosin contractility generated cooperatively by nonmuscle myosin II and actin filaments plays essential roles in a wide range of biological processes, such as cell motility, cytokinesis, and tissue morphogenesis. However, subcellular dynamics of actomyosin contractility underlying such processes remains elusive. Here, we demonstrate an optogenetic method to induce relaxation of actomyosin contractility at the subcellular level. The system, named OptoMYPT, combines a protein phosphatase 1c (PP1c)-binding domain of MYPT1 with an optogenetic dimerizer, so that it allows light-dependent recruitment of endogenous PP1c to the plasma membrane. Blue-light illumination is sufficient to induce dephosphorylation of myosin regulatory light chains and a decrease in actomyosin contractile force in mammalian cells and Xenopus embryos. The OptoMYPT system is further employed to understand the mechanics of actomyosin-based cortical tension and contractile ring tension during cytokinesis. We find that the relaxation of cortical tension at both poles by OptoMYPT accelerated the furrow ingression rate, revealing that the cortical tension substantially antagonizes constriction of the cleavage furrow. Based on these results, the OptoMYPT system provides opportunities to understand cellular and tissue mechanics.

Suggested Citation

  • Kei Yamamoto & Haruko Miura & Motohiko Ishida & Yusuke Mii & Noriyuki Kinoshita & Shinji Takada & Naoto Ueno & Satoshi Sawai & Yohei Kondo & Kazuhiro Aoki, 2021. "Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27458-3
    DOI: 10.1038/s41467-021-27458-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27458-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27458-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Léo Valon & Ariadna Marín-Llauradó & Thomas Wyatt & Guillaume Charras & Xavier Trepat, 2017. "Optogenetic control of cellular forces and mechanotransduction," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    2. Masayoshi Uehata & Toshimasa Ishizaki & Hiroyuki Satoh & Takashi Ono & Toshio Kawahara & Tamami Morishita & Hiroki Tamakawa & Keiji Yamagami & Jun Inui & Midori Maekawa & Shuh Narumiya, 1997. "Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension," Nature, Nature, vol. 389(6654), pages 990-994, October.
    3. Patrick W. Oakes & Elizabeth Wagner & Christoph A. Brand & Dimitri Probst & Marco Linke & Ulrich S. Schwarz & Michael Glotzer & Margaret L. Gardel, 2017. "Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    4. Emiliano Izquierdo & Theresa Quinkler & Stefano De Renzis, 2018. "Guided morphogenesis through optogenetic activation of Rho signalling during early Drosophila embryogenesis," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    5. Anselm Levskaya & Orion D. Weiner & Wendell A. Lim & Christopher A. Voigt, 2009. "Spatiotemporal control of cell signalling using a light-switchable protein interaction," Nature, Nature, vol. 461(7266), pages 997-1001, October.
    6. Jakub Sedzinski & Maté Biro & Annelie Oswald & Jean-Yves Tinevez & Guillaume Salbreux & Ewa Paluch, 2011. "Polar actomyosin contractility destabilizes the position of the cytokinetic furrow," Nature, Nature, vol. 476(7361), pages 462-466, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emilie Montembault & Irène Deduyer & Marie-Charlotte Claverie & Lou Bouit & Nicolas J. Tourasse & Denis Dupuy & Derek McCusker & Anne Royou, 2023. "Two RhoGEF isoforms with distinct localisation control furrow position during asymmetric cell division," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Guillermo Martínez-Ara & Núria Taberner & Mami Takayama & Elissavet Sandaltzopoulou & Casandra E. Villava & Miquel Bosch-Padrós & Nozomu Takata & Xavier Trepat & Mototsugu Eiraku & Miki Ebisuya, 2022. "Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Özge Özgüç & Ludmilla de Plater & Varun Kapoor & Anna Francesca Tortorelli & Andrew G Clark & Jean-Léon Maître, 2022. "Cortical softening elicits zygotic contractility during mouse preimplantation development," PLOS Biology, Public Library of Science, vol. 20(3), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillermo Martínez-Ara & Núria Taberner & Mami Takayama & Elissavet Sandaltzopoulou & Casandra E. Villava & Miquel Bosch-Padrós & Nozomu Takata & Xavier Trepat & Mototsugu Eiraku & Miki Ebisuya, 2022. "Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Adrien Méry & Artur Ruppel & Jean Revilloud & Martial Balland & Giovanni Cappello & Thomas Boudou, 2023. "Light-driven biological actuators to probe the rheology of 3D microtissues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Ariadna Marín-Llauradó & Sohan Kale & Adam Ouzeri & Tom Golde & Raimon Sunyer & Alejandro Torres-Sánchez & Ernest Latorre & Manuel Gómez-González & Pere Roca-Cusachs & Marino Arroyo & Xavier Trepat, 2023. "Mapping mechanical stress in curved epithelia of designed size and shape," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Takayuki Yasunaga & Johannes Wiegel & Max D. Bergen & Martin Helmstädter & Daniel Epting & Andrea Paolini & Özgün Çiçek & Gerald Radziwill & Christina Engel & Thomas Brox & Olaf Ronneberger & Peter Wa, 2022. "Microridge-like structures anchor motile cilia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Yuqi Zhang & Yizeng Li & Keyata N. Thompson & Konstantin Stoletov & Qinling Yuan & Kaustav Bera & Se Jong Lee & Runchen Zhao & Alexander Kiepas & Yao Wang & Panagiotis Mistriotis & Selma A. Serra & Jo, 2022. "Polarized NHE1 and SWELL1 regulate migration direction, efficiency and metastasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Sijia Zhou & Peng Li & Jiaying Liu & Juan Liao & Hao Li & Lin Chen & Zhihua Li & Qiongyu Guo & Karine Belguise & Bin Yi & Xiaobo Wang, 2022. "Two Rac1 pools integrate the direction and coordination of collective cell migration," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    7. Julien Fierling & Alphy John & Barthélémy Delorme & Alexandre Torzynski & Guy B. Blanchard & Claire M. Lye & Anna Popkova & Grégoire Malandain & Bénédicte Sanson & Jocelyn Étienne & Philippe Marmottan, 2022. "Embryo-scale epithelial buckling forms a propagating furrow that initiates gastrulation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Willow Coyote-Maestas & David Nedrud & Antonio Suma & Yungui He & Kenneth A. Matreyek & Douglas M. Fowler & Vincenzo Carnevale & Chad L. Myers & Daniel Schmidt, 2021. "Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    9. Béla Horváth & Gábor Lenzsér & Balázs Benyó & Tamás Németh & Rita Benkő & András Iring & Péter Hermán & Katalin Komjáti & Zsombor Lacza & Péter Sándor & Zoltán Benyó, 2010. "Hypersensitivity to Thromboxane Receptor Mediated Cerebral Vasomotion and CBF Oscillations during Acute NO-Deficiency in Rats," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-6, December.
    10. Hannah J. Gustafson & Nikolas Claussen & Stefano Renzis & Sebastian J. Streichan, 2022. "Patterned mechanical feedback establishes a global myosin gradient," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Francesca Mateo & Zhengcheng He & Lin Mei & Gorka Ruiz de Garibay & Carmen Herranz & Nadia García & Amanda Lorentzian & Alexandra Baiges & Eline Blommaert & Antonio Gómez & Oriol Mirallas & Anna Garri, 2022. "Modification of BRCA1-associated breast cancer risk by HMMR overexpression," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Judee A. Sharon & Chelsea Dasrath & Aiden Fujiwara & Alessandro Snyder & Mace Blank & Sam O’Brien & Lauren M. Aufdembrink & Aaron E. Engelhart & Katarzyna P. Adamala, 2023. "Trumpet is an operating system for simple and robust cell-free biocomputing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Shun Li & Zong-Yuan Liu & Hao Li & Sijia Zhou & Jiaying Liu & Ningwei Sun & Kai-Fu Yang & Vanessa Dougados & Thomas Mangeat & Karine Belguise & Xi-Qiao Feng & Yiyao Liu & Xiaobo Wang, 2024. "Basal actomyosin pulses expand epithelium coordinating cell flattening and tissue elongation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    14. Emilie Montembault & Irène Deduyer & Marie-Charlotte Claverie & Lou Bouit & Nicolas J. Tourasse & Denis Dupuy & Derek McCusker & Anne Royou, 2023. "Two RhoGEF isoforms with distinct localisation control furrow position during asymmetric cell division," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Ying Yang & Pekka Paivinen & Chang Xie & Alexis Leigh Krup & Tomi P. Makela & Keith E. Mostov & Jeremy F. Reiter, 2021. "Ciliary Hedgehog signaling patterns the digestive system to generate mechanical forces driving elongation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27458-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.