IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v541y2017i7637d10.1038_nature21348.html
   My bibliography  Save this article

From morphogen to morphogenesis and back

Author

Listed:
  • Darren Gilmour

    (European Molecular Biology Laboratory)

  • Martina Rembold

    (Institute for Genetics, University of Cologne
    Present address: European Molecular Biology Organization, 69117 Heidelberg, Germany.)

  • Maria Leptin

    (European Molecular Biology Laboratory
    Institute for Genetics, University of Cologne)

Abstract

A long-term aim of the life sciences is to understand how organismal shape is encoded by the genome. An important challenge is to identify mechanistic links between the genes that control cell-fate decisions and the cellular machines that generate shape, therefore closing the gap between genotype and phenotype. The logic and mechanisms that integrate these different levels of shape control are beginning to be described, and recently discovered mechanisms of cross-talk and feedback are beginning to explain the remarkable robustness of organ assembly. The 'full-circle' understanding of morphogenesis that is emerging, besides solving a key puzzle in biology, provides a mechanistic framework for future approaches to tissue engineering.

Suggested Citation

  • Darren Gilmour & Martina Rembold & Maria Leptin, 2017. "From morphogen to morphogenesis and back," Nature, Nature, vol. 541(7637), pages 311-320, January.
  • Handle: RePEc:nat:nature:v:541:y:2017:i:7637:d:10.1038_nature21348
    DOI: 10.1038/nature21348
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature21348
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature21348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hannah J. Gustafson & Nikolas Claussen & Stefano Renzis & Sebastian J. Streichan, 2022. "Patterned mechanical feedback establishes a global myosin gradient," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Lijuan Du & Alex Sohr & Yujia Li & Sougata Roy, 2022. "GPI-anchored FGF directs cytoneme-mediated bidirectional contacts to regulate its tissue-specific dispersion," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Aurélien Villedieu & Lale Alpar & Isabelle Gaugué & Amina Joudat & François Graner & Floris Bosveld & Yohanns Bellaïche, 2023. "Homeotic compartment curvature and tension control spatiotemporal folding dynamics," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Anchel de Jaime-Soguero & Janina Hattemer & Anja Bufe & Alexander Haas & Jeroen Berg & Vincent Batenburg & Biswajit Das & Barbara Marco & Stefania Androulaki & Nicolas Böhly & Jonathan J. M. Landry & , 2024. "Developmental signals control chromosome segregation fidelity during pluripotency and neurogenesis by modulating replicative stress," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    5. Amrita Singh & Sameedha Thale & Tobias Leibner & Lucas Lamparter & Andrea Ricker & Harald Nüsse & Jürgen Klingauf & Milos Galic & Mario Ohlberger & Maja Matis, 2024. "Dynamic interplay of microtubule and actomyosin forces drive tissue extension," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:541:y:2017:i:7637:d:10.1038_nature21348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.