IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30417-1.html
   My bibliography  Save this article

GPI-anchored FGF directs cytoneme-mediated bidirectional contacts to regulate its tissue-specific dispersion

Author

Listed:
  • Lijuan Du

    (University of Maryland)

  • Alex Sohr

    (University of Maryland
    Center for Biologics Evaluation and Research, Food and Drug Administration)

  • Yujia Li

    (University of Maryland)

  • Sougata Roy

    (University of Maryland)

Abstract

How signaling proteins generate a multitude of information to organize tissue patterns is critical to understanding morphogenesis. In Drosophila, FGF produced in wing-disc cells regulates the development of the disc-associated air-sac-primordium (ASP). Here, we show that FGF is Glycosylphosphatidylinositol-anchored to the producing cell surface and that this modification both inhibits free FGF secretion and promotes target-specific cytoneme contacts and contact-dependent FGF release. FGF-source and ASP cells extend cytonemes that present FGF and FGFR on their surfaces and reciprocally recognize each other over distance by contacting through cell-adhesion-molecule (CAM)-like FGF-FGFR binding. Contact-mediated FGF-FGFR interactions induce bidirectional responses in ASP and source cells that, in turn, polarize FGF-sending and FGF-receiving cytonemes toward each other to reinforce signaling contacts. Subsequent un-anchoring of FGFR-bound-FGF from the source membrane dissociates cytoneme contacts and delivers FGF target-specifically to ASP cytonemes for paracrine functions. Thus, GPI-anchored FGF organizes both source and recipient cells and self-regulates its cytoneme-mediated tissue-specific dispersion.

Suggested Citation

  • Lijuan Du & Alex Sohr & Yujia Li & Sougata Roy, 2022. "GPI-anchored FGF directs cytoneme-mediated bidirectional contacts to regulate its tissue-specific dispersion," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30417-1
    DOI: 10.1038/s41467-022-30417-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30417-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30417-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mayu Inaba & Michael Buszczak & Yukiko M. Yamashita, 2015. "Nanotubes mediate niche–stem-cell signalling in the Drosophila testis," Nature, Nature, vol. 523(7560), pages 329-332, July.
    2. Darren Gilmour & Martina Rembold & Maria Leptin, 2017. "From morphogen to morphogenesis and back," Nature, Nature, vol. 541(7637), pages 311-320, January.
    3. Akshay Patel & Yicong Wu & Xiaofei Han & Yijun Su & Tim Maugel & Hari Shroff & Sougata Roy, 2022. "Cytonemes coordinate asymmetric signaling and organization in the Drosophila muscle progenitor niche," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Eliana Stanganello & Anja I. H. Hagemann & Benjamin Mattes & Claude Sinner & Dana Meyen & Sabrina Weber & Alexander Schug & Erez Raz & Steffen Scholpp, 2015. "Filopodia-based Wnt transport during vertebrate tissue patterning," Nature Communications, Nature, vol. 6(1), pages 1-14, May.
    5. Cyrille Alexandre & Alberto Baena-Lopez & Jean-Paul Vincent, 2014. "Patterning and growth control by membrane-tethered Wingless," Nature, Nature, vol. 505(7482), pages 180-185, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrián Aguirre-Tamaral & Manuel Cambón & David Poyato & Juan Soler & Isabel Guerrero, 2022. "Predictive model for cytoneme guidance in Hedgehog signaling based on Ihog- Glypicans interaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Hannah J. Gustafson & Nikolas Claussen & Stefano Renzis & Sebastian J. Streichan, 2022. "Patterned mechanical feedback establishes a global myosin gradient," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Shinya Matsuda & Jonas V. Schaefer & Yusuke Mii & Yutaro Hori & Dimitri Bieli & Masanori Taira & Andreas Plückthun & Markus Affolter, 2021. "Asymmetric requirement of Dpp/BMP morphogen dispersal in the Drosophila wing disc," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    4. Aurélien Villedieu & Lale Alpar & Isabelle Gaugué & Amina Joudat & François Graner & Floris Bosveld & Yohanns Bellaïche, 2023. "Homeotic compartment curvature and tension control spatiotemporal folding dynamics," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Amrita Singh & Sameedha Thale & Tobias Leibner & Lucas Lamparter & Andrea Ricker & Harald Nüsse & Jürgen Klingauf & Milos Galic & Mario Ohlberger & Maja Matis, 2024. "Dynamic interplay of microtubule and actomyosin forces drive tissue extension," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Timo Kuhn & Amit N. Landge & David Mörsdorf & Jonas Coßmann & Johanna Gerstenecker & Daniel Čapek & Patrick Müller & J. Christof M. Gebhardt, 2022. "Single-molecule tracking of Nodal and Lefty in live zebrafish embryos supports hindered diffusion model," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Anchel de Jaime-Soguero & Janina Hattemer & Anja Bufe & Alexander Haas & Jeroen Berg & Vincent Batenburg & Biswajit Das & Barbara Marco & Stefania Androulaki & Nicolas Böhly & Jonathan J. M. Landry & , 2024. "Developmental signals control chromosome segregation fidelity during pluripotency and neurogenesis by modulating replicative stress," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    8. Akshay Patel & Yicong Wu & Xiaofei Han & Yijun Su & Tim Maugel & Hari Shroff & Sougata Roy, 2022. "Cytonemes coordinate asymmetric signaling and organization in the Drosophila muscle progenitor niche," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Sharif M. Ridwan & Autumn Twillie & Samaneh Poursaeid & Emma Kristine Beard & Muhammed Burak Bener & Matthew Antel & Ann E. Cowan & Shinya Matsuda & Mayu Inaba, 2024. "Diffusible fraction of niche BMP ligand safeguards stem-cell differentiation," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Zachary T. Spencer & Victoria H. Ng & Hassina Benchabane & Ghalia Saad Siddiqui & Deepesh Duwadi & Ben Maines & Jamal M. Bryant & Anna Schwarzkopf & Kai Yuan & Sara N. Kassel & Anant Mishra & Ashley P, 2023. "The USP46 deubiquitylase complex increases Wingless/Wnt signaling strength by stabilizing Arrow/LRP6," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Matthew Antel & Romir Raj & Madona Y. G. Masoud & Ziwei Pan & Sheng Li & Barbara G. Mellone & Mayu Inaba, 2022. "Interchromosomal interaction of homologous Stat92E alleles regulates transcriptional switch during stem-cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30417-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.