IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42656-x.html
   My bibliography  Save this article

Temporal chromatin accessibility changes define transcriptional states essential for osteosarcoma metastasis

Author

Listed:
  • W. Dean Pontius

    (Case Western Reserve University School of Medicine
    Cleveland Clinic Lerner College of Medicine of Case Western Reserve University)

  • Ellen S. Hong

    (Case Western Reserve University School of Medicine)

  • Zachary J. Faber

    (Case Western Reserve University School of Medicine)

  • Jeremy Gray

    (Case Western Reserve University School of Medicine)

  • Craig D. Peacock

    (Case Western Reserve University School of Medicine)

  • Ian Bayles

    (Case Western Reserve University School of Medicine)

  • Katreya Lovrenert

    (Case Western Reserve University School of Medicine)

  • Diana H. Chin

    (Case Western Reserve University School of Medicine)

  • Berkley E. Gryder

    (Case Western Reserve University School of Medicine)

  • Cynthia F. Bartels

    (Case Western Reserve University School of Medicine)

  • Peter C. Scacheri

    (Case Western Reserve University School of Medicine
    Discovery Biomarkers)

Abstract

The metastasis-invasion cascade describes the series of steps required for a cancer cell to successfully spread from its primary tumor and ultimately grow within a secondary organ. Despite metastasis being a dynamic, multistep process, most omics studies to date have focused on comparing primary tumors to the metastatic deposits that define end-stage disease. This static approach means we lack information about the genomic and epigenomic changes that occur during the majority of tumor progression. One particularly understudied phase of tumor progression is metastatic colonization, during which cells must adapt to the new microenvironment of the secondary organ. Through temporal profiling of chromatin accessibility and gene expression in vivo, we identify dynamic changes in the epigenome that occur as osteosarcoma tumors form and grow within the lung microenvironment. Furthermore, we show through paired in vivo and in vitro CRISPR drop-out screens and pharmacological validation that the upstream transcription factors represent a class of metastasis-specific dependency genes. While current models depict lung colonization as a discrete step within the metastatic cascade, our study shows it is a defined trajectory through multiple epigenetic states, revealing new therapeutic opportunities undetectable with standard approaches.

Suggested Citation

  • W. Dean Pontius & Ellen S. Hong & Zachary J. Faber & Jeremy Gray & Craig D. Peacock & Ian Bayles & Katreya Lovrenert & Diana H. Chin & Berkley E. Gryder & Cynthia F. Bartels & Peter C. Scacheri, 2023. "Temporal chromatin accessibility changes define transcriptional states essential for osteosarcoma metastasis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42656-x
    DOI: 10.1038/s41467-023-42656-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42656-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42656-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joan Massagué & Anna C. Obenauf, 2016. "Metastatic colonization by circulating tumour cells," Nature, Nature, vol. 529(7586), pages 298-306, January.
    2. Peter Priestley & Jonathan Baber & Martijn P. Lolkema & Neeltje Steeghs & Ewart Bruijn & Charles Shale & Korneel Duyvesteyn & Susan Haidari & Arne Hoeck & Wendy Onstenk & Paul Roepman & Mircea Voda & , 2019. "Pan-cancer whole-genome analyses of metastatic solid tumours," Nature, Nature, vol. 575(7781), pages 210-216, November.
    3. Elizabeth Stewart & Sara M. Federico & Xiang Chen & Anang A. Shelat & Cori Bradley & Brittney Gordon & Asa Karlstrom & Nathaniel R. Twarog & Michael R. Clay & Armita Bahrami & Burgess B. Freeman & Bei, 2017. "Orthotopic patient-derived xenografts of paediatric solid tumours," Nature, Nature, vol. 549(7670), pages 96-100, September.
    4. Dan R. Robinson & Yi-Mi Wu & Robert J. Lonigro & Pankaj Vats & Erin Cobain & Jessica Everett & Xuhong Cao & Erica Rabban & Chandan Kumar-Sinha & Victoria Raymond & Scott Schuetze & Ajjai Alva & Javed , 2017. "Integrative clinical genomics of metastatic cancer," Nature, Nature, vol. 548(7667), pages 297-303, August.
    5. Samuel F. Bakhoum & Bryan Ngo & Ashley M. Laughney & Julie-Ann Cavallo & Charles J. Murphy & Peter Ly & Pragya Shah & Roshan K. Sriram & Thomas B. K. Watkins & Neil K. Taunk & Mercedes Duran & Chantal, 2018. "Chromosomal instability drives metastasis through a cytosolic DNA response," Nature, Nature, vol. 553(7689), pages 467-472, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johanna Zerbib & Marica Rosaria Ippolito & Yonatan Eliezer & Giuseppina Feudis & Eli Reuveni & Anouk Savir Kadmon & Sara Martin & Sonia Viganò & Gil Leor & James Berstler & Julia Muenzner & Michael Mü, 2024. "Human aneuploid cells depend on the RAF/MEK/ERK pathway for overcoming increased DNA damage," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Rong Xiao & Deshu Xu & Meili Zhang & Zhanghua Chen & Li Cheng & Songjie Du & Mingfei Lu & Tonghai Zhou & Ruoyan Li & Fan Bai & Yue Huang, 2024. "Aneuploid embryonic stem cells drive teratoma metastasis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Biaobin Jiang & Quanhua Mu & Fufang Qiu & Xuefeng Li & Weiqi Xu & Jun Yu & Weilun Fu & Yong Cao & Jiguang Wang, 2021. "Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Zhe Jiang & YoungJun Ju & Amjad Ali & Philip E. D. Chung & Patryk Skowron & Dong-Yu Wang & Mariusz Shrestha & Huiqin Li & Jeff C. Liu & Ioulia Vorobieva & Ronak Ghanbari-Azarnier & Ethel Mwewa & Maria, 2023. "Distinct shared and compartment-enriched oncogenic networks drive primary versus metastatic breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    5. Cambrosio, Alberto & Campbell, Jonah & Keating, Peter & Polk, Jessica B. & Aguilar-Mahecha, Adriana & Basik, Mark, 2022. "Healthcare policy by other means: Cancer clinical research as “oncopolicy”," Social Science & Medicine, Elsevier, vol. 292(C).
    6. Humberto Contreras-Trujillo & Jiya Eerdeng & Samir Akre & Du Jiang & Jorge Contreras & Basia Gala & Mary C. Vergel-Rodriguez & Yeachan Lee & Aparna Jorapur & Areen Andreasian & Lisa Harton & Charles S, 2021. "Deciphering intratumoral heterogeneity using integrated clonal tracking and single-cell transcriptome analyses," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    7. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    8. Marta Palafox & Laia Monserrat & Meritxell Bellet & Guillermo Villacampa & Abel Gonzalez-Perez & Mafalda Oliveira & Fara Brasó-Maristany & Nusaibah Ibrahimi & Srinivasaraghavan Kannan & Leonardo Mina , 2022. "High p16 expression and heterozygous RB1 loss are biomarkers for CDK4/6 inhibitor resistance in ER+ breast cancer," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    9. Oriol Pich & Iker Reyes-Salazar & Abel Gonzalez-Perez & Nuria Lopez-Bigas, 2022. "Discovering the drivers of clonal hematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Yi Zhang & Guojia Xie & Ji-Eun Lee & Mohamad Zandian & Deepthi Sudarshan & Benjamin Estavoyer & Caroline Benz & Tiina Viita & Golareh Asgaritarghi & Catherine Lachance & Clémence Messmer & Leandro Sim, 2024. "ASXLs binding to the PHD2/3 fingers of MLL4 provides a mechanism for the recruitment of BAP1 to active enhancers," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Jae Eun Choi & Yuanyuan Qiao & Ilona Kryczek & Jiali Yu & Jonathan Gurkan & Yi Bao & Mahnoor Gondal & Jean Ching-Yi Tien & Tomasz Maj & Sahr Yazdani & Abhijit Parolia & Houjun Xia & JiaJia Zhou & Shua, 2024. "PIKfyve, expressed by CD11c-positive cells, controls tumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Mei Zhao & Tianxiao Wang & Frederico O. Gleber-Netto & Zhen Chen & Daniel J. McGrail & Javier A. Gomez & Wutong Ju & Mayur A. Gadhikar & Wencai Ma & Li Shen & Qi Wang & Ximing Tang & Sen Pathak & Mari, 2024. "Mutant p53 gains oncogenic functions through a chromosomal instability-induced cytosolic DNA response," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Eline J. M. Bertrums & Jurrian K. Kanter & Lucca L. M. Derks & Mark Verheul & Laurianne Trabut & Markus J. Roosmalen & Henrik Hasle & Evangelia Antoniou & Dirk Reinhardt & Michael N. Dworzak & Nora Mü, 2024. "Selective pressures of platinum compounds shape the evolution of therapy-related myeloid neoplasms," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Lino Möhrmann & Maximilian Werner & Małgorzata Oleś & Andreas Mock & Sebastian Uhrig & Arne Jahn & Simon Kreutzfeldt & Martina Fröhlich & Barbara Hutter & Nagarajan Paramasivam & Daniela Richter & Kat, 2022. "Comprehensive genomic and epigenomic analysis in cancer of unknown primary guides molecularly-informed therapies despite heterogeneity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Huiqiang Cai & Bin Zhang & Johanne Ahrenfeldt & Justin V. Joseph & Maria Riedel & Zongliang Gao & Sofie K. Thomsen & Ditte S. Christensen & Rasmus O. Bak & Henrik Hager & Mikkel H. Vendelbo & Xin Gao , 2024. "CRISPR/Cas9 model of prostate cancer identifies Kmt2c deficiency as a metastatic driver by Odam/Cabs1 gene cluster expression," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Brian D. Lehmann & Antonio Colaprico & Tiago C. Silva & Jianjiao Chen & Hanbing An & Yuguang Ban & Hanchen Huang & Lily Wang & Jamaal L. James & Justin M. Balko & Paula I. Gonzalez-Ericsson & Melinda , 2021. "Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    17. Josh N. Vo & Yi-Mi Wu & Jeanmarie Mishler & Sarah Hall & Rahul Mannan & Lisha Wang & Yu Ning & Jin Zhou & Alexander C. Hopkins & James C. Estill & Wallace K. B. Chan & Jennifer Yesil & Xuhong Cao & Ar, 2022. "The genetic heterogeneity and drug resistance mechanisms of relapsed refractory multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Amanda Fitzpatrick & Marjan Iravani & Adam Mills & David Vicente & Thanussuyah Alaguthurai & Ioannis Roxanis & Nicholas C. Turner & Syed Haider & Andrew N. J. Tutt & Clare M. Isacke, 2023. "Genomic profiling and pre-clinical modelling of breast cancer leptomeningeal metastasis reveals acquisition of a lobular-like phenotype," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Roberta Esposito & Andrés Lanzós & Tina Uroda & Sunandini Ramnarayanan & Isabel Büchi & Taisia Polidori & Hugo Guillen-Ramirez & Ante Mihaljevic & Bernard Mefi Merlin & Lia Mela & Eugenio Zoni & Lusin, 2023. "Tumour mutations in long noncoding RNAs enhance cell fitness," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    20. Kate M. MacDonald & Shirony Nicholson-Puthenveedu & Maha M. Tageldein & Sarika Khasnis & Cheryl H. Arrowsmith & Shane M. Harding, 2023. "Antecedent chromatin organization determines cGAS recruitment to ruptured micronuclei," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42656-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.