IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28438-x.html
   My bibliography  Save this article

Lin28B-high breast cancer cells promote immune suppression in the lung pre-metastatic niche via exosomes and support cancer progression

Author

Listed:
  • Meiyan Qi

    (Chinese Academy of Sciences)

  • Yun Xia

    (Huazhong University of Science and Technology)

  • Yanjun Wu

    (Chinese Academy of Sciences)

  • Zhuo Zhang

    (East China University of Science and Technology)

  • Xinyu Wang

    (Chinese Academy of Sciences)

  • Liying Lu

    (Chinese Academy of Sciences)

  • Cheng Dai

    (Chinese Academy of Sciences)

  • Yanan Song

    (Chinese Academy of Sciences)

  • Keying Xu

    (Chinese Academy of Sciences)

  • Weiwei Ji

    (Chinese Academy of Sciences)

  • Lixing Zhan

    (Chinese Academy of Sciences)

Abstract

The formation of pre-metastatic niche is a key step in the metastatic burden. The pluripotent factor Lin28B is frequently expressed in breast tumors and is particularly upregulated in the triple negative breast cancer subtype. Here, we demonstrate that Lin28B promotes lung metastasis of breast cancer by building an immune-suppressive pre-metastatic niche. Lin28B enables neutrophil recruitment and N2 conversion. The N2 neutrophils are then essential for immune suppression in pre-metastatic lung by PD-L2 up-regulation and a dysregulated cytokine milieu. We also identify that breast cancer-released exosomes with low let-7s are a prerequisite for Lin28B-induced immune suppression. Moreover, Lin28B-induced breast cancer stem cells are the main sources of low-let-7s exosomes. Clinical data further verify that high Lin28B and low let-7s in tumors are both indicators for poor prognosis and lung metastasis in breast cancer patients. Together, these data reveal a mechanism by which Lin28B directs the formation of an immune-suppressive pre-metastatic niche.

Suggested Citation

  • Meiyan Qi & Yun Xia & Yanjun Wu & Zhuo Zhang & Xinyu Wang & Liying Lu & Cheng Dai & Yanan Song & Keying Xu & Weiwei Ji & Lixing Zhan, 2022. "Lin28B-high breast cancer cells promote immune suppression in the lung pre-metastatic niche via exosomes and support cancer progression," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28438-x
    DOI: 10.1038/s41467-022-28438-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28438-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28438-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tian Fang & Hongwei Lv & Guishuai Lv & Ting Li & Changzheng Wang & Qin Han & Lexing Yu & Bo Su & Linna Guo & Shanna Huang & Dan Cao & Liang Tang & Shanhua Tang & Mengchao Wu & Wen Yang & Hongyang Wang, 2018. "Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    2. Yannick Simoni & Etienne Becht & Michael Fehlings & Chiew Yee Loh & Si-Lin Koo & Karen Wei Weng Teng & Joe Poh Sheng Yeong & Rahul Nahar & Tong Zhang & Hassen Kared & Kaibo Duan & Nicholas Ang & Micha, 2018. "Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates," Nature, Nature, vol. 557(7706), pages 575-579, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Judit Svensson-Arvelund & Sara Cuadrado-Castano & Gvantsa Pantsulaia & Kristy Kim & Mark Aleynick & Linda Hammerich & Ranjan Upadhyay & Michael Yellin & Henry Marsh & Daniel Oreper & Suchit Jhunjhunwa, 2022. "Expanding cross-presenting dendritic cells enhances oncolytic virotherapy and is critical for long-term anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Jeppe Sejerø Holm & Samuel A. Funt & Annie Borch & Kamilla Kjærgaard Munk & Anne-Mette Bjerregaard & James L. Reading & Colleen Maher & Ashley Regazzi & Phillip Wong & Hikmat Al-Ahmadie & Gopa Iyer & , 2022. "Neoantigen-specific CD8 T cell responses in the peripheral blood following PD-L1 blockade might predict therapy outcome in metastatic urothelial carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Cirino Botta & Cristina Perez & Marta Larrayoz & Noemi Puig & Maria-Teresa Cedena & Rosalinda Termini & Ibai Goicoechea & Sara Rodriguez & Aintzane Zabaleta & Aitziber Lopez & Sarai Sarvide & Laura Bl, 2023. "Large T cell clones expressing immune checkpoints increase during multiple myeloma evolution and predict treatment resistance," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Eishiro Mizukoshi & Hidetoshi Nakagawa & Toshikatsu Tamai & Masaaki Kitahara & Kazumi Fushimi & Kouki Nio & Takeshi Terashima & Noriho Iida & Kuniaki Arai & Tatsuya Yamashita & Taro Yamashita & Yoshio, 2022. "Peptide vaccine-treated, long-term surviving cancer patients harbor self-renewing tumor-specific CD8+ T cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Silvia Tiberti & Carlotta Catozzi & Ottavio Croci & Mattia Ballerini & Danilo Cagnina & Chiara Soriani & Caterina Scirgolea & Zheng Gong & Jiatai He & Angeli D. Macandog & Amir Nabinejad & Carina B. N, 2022. "GZMKhigh CD8+ T effector memory cells are associated with CD15high neutrophil abundance in non-metastatic colorectal tumors and predict poor clinical outcome," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Dan Zhao & Kerui Wu & Sambad Sharma & Fei Xing & Shih-Ying Wu & Abhishek Tyagi & Ravindra Deshpande & Ravi Singh & Martin Wabitsch & Yin-Yuan Mo & Kounosuke Watabe, 2022. "Exosomal miR-1304-3p promotes breast cancer progression in African Americans by activating cancer-associated adipocytes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Irma Telarovic & Carmen S. M. Yong & Lisa Kurz & Irene Vetrugno & Sabrina Reichl & Alba Sanchez Fernandez & Hung-Wei Cheng & Rona Winkler & Matthias Guckenberger & Anja Kipar & Burkhard Ludewig & Mart, 2024. "Delayed tumor-draining lymph node irradiation preserves the efficacy of combined radiotherapy and immune checkpoint blockade in models of metastatic disease," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    8. Jani Huuhtanen & Liang Chen & Emmi Jokinen & Henna Kasanen & Tapio Lönnberg & Anna Kreutzman & Katriina Peltola & Micaela Hernberg & Chunlin Wang & Cassian Yee & Harri Lähdesmäki & Mark M. Davis & Sat, 2022. "Evolution and modulation of antigen-specific T cell responses in melanoma patients," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Hong Sheng Quah & Elaine Yiqun Cao & Lisda Suteja & Constance H. Li & Hui Sun Leong & Fui Teen Chong & Shilpi Gupta & Camille Arcinas & John F. Ouyang & Vivian Ang & Teja Celhar & Yunqian Zhao & Hui C, 2023. "Single cell analysis in head and neck cancer reveals potential immune evasion mechanisms during early metastasis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Allen Y. Leary & Darius Scott & Namita T. Gupta & Janelle C. Waite & Dimitris Skokos & Gurinder S. Atwal & Peter G. Hawkins, 2024. "Designing meaningful continuous representations of T cell receptor sequences with deep generative models," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Yue Zhao & Jian Gao & Jun Wang & Fanfan Fan & Chao Cheng & Danwen Qian & Ran Guo & Yang Zhang & Ting Ye & Marcellus Augustine & Yicong Lin & Jun Shang & Hang Li & Yunjian Pan & Qingyuan Huang & Haiqin, 2024. "Genomic and immune heterogeneity of multiple synchronous lung adenocarcinoma at different developmental stages," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Bo Wang & Jing Chen & Julia S. Caserto & Xi Wang & Minglin Ma, 2022. "An in situ hydrogel-mediated chemo-immunometabolic cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28438-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.