IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44504-4.html
   My bibliography  Save this article

Tubeimosides are pan-coronavirus and filovirus inhibitors that can block their fusion protein binding to Niemann-Pick C1

Author

Listed:
  • Ilyas Khan

    (Chinese Academy of Agricultural Sciences)

  • Sunan Li

    (Chinese Academy of Agricultural Sciences)

  • Lihong Tao

    (Chinese Academy of Agricultural Sciences)

  • Chong Wang

    (Chinese Academy of Agricultural Sciences)

  • Bowei Ye

    (The University of Illinois Chicago)

  • Huiyu Li

    (The University of Illinois Chicago)

  • Xiaoyang Liu

    (Chinese Academy of Agricultural Sciences)

  • Iqbal Ahmad

    (Chinese Academy of Agricultural Sciences)

  • Wenqiang Su

    (Chinese Academy of Agricultural Sciences)

  • Gongxun Zhong

    (Chinese Academy of Agricultural Sciences)

  • Zhiyuan Wen

    (Chinese Academy of Agricultural Sciences)

  • Jinliang Wang

    (Chinese Academy of Agricultural Sciences)

  • Rong-Hong Hua

    (Chinese Academy of Agricultural Sciences)

  • Ao Ma

    (The University of Illinois Chicago)

  • Jie Liang

    (The University of Illinois Chicago)

  • Xiao-Peng Wan

    (Chinese Academy of Agricultural Sciences)

  • Zhi-Gao Bu

    (Chinese Academy of Agricultural Sciences)

  • Yong-Hui Zheng

    (The University of Illinois Chicago)

Abstract

SARS-CoV-2 and filovirus enter cells via the cell surface angiotensin-converting enzyme 2 (ACE2) or the late-endosome Niemann-Pick C1 (NPC1) as a receptor. Here, we screened 974 natural compounds and identified Tubeimosides I, II, and III as pan-coronavirus and filovirus entry inhibitors that target NPC1. Using in-silico, biochemical, and genomic approaches, we provide evidence that NPC1 also binds SARS-CoV-2 spike (S) protein on the receptor-binding domain (RBD), which is blocked by Tubeimosides. Importantly, NPC1 strongly promotes productive SARS-CoV-2 entry, which we propose is due to its influence on fusion in late endosomes. The Tubeimosides’ antiviral activity and NPC1 function are further confirmed by infection with SARS-CoV-2 variants of concern (VOC), SARS-CoV, and MERS-CoV. Thus, NPC1 is a critical entry co-factor for highly pathogenic human coronaviruses (HCoVs) in the late endosomes, and Tubeimosides hold promise as a new countermeasure for these HCoVs and filoviruses.

Suggested Citation

  • Ilyas Khan & Sunan Li & Lihong Tao & Chong Wang & Bowei Ye & Huiyu Li & Xiaoyang Liu & Iqbal Ahmad & Wenqiang Su & Gongxun Zhong & Zhiyuan Wen & Jinliang Wang & Rong-Hong Hua & Ao Ma & Jie Liang & Xia, 2024. "Tubeimosides are pan-coronavirus and filovirus inhibitors that can block their fusion protein binding to Niemann-Pick C1," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44504-4
    DOI: 10.1038/s41467-023-44504-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44504-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44504-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fan Wu & Su Zhao & Bin Yu & Yan-Mei Chen & Wen Wang & Zhi-Gang Song & Yi Hu & Zhao-Wu Tao & Jun-Hua Tian & Yuan-Yuan Pei & Ming-Li Yuan & Yu-Ling Zhang & Fa-Hui Dai & Yi Liu & Qi-Min Wang & Jiao-Jiao , 2020. "Author Correction: A new coronavirus associated with human respiratory disease in China," Nature, Nature, vol. 580(7803), pages 7-7, April.
    2. Donald J. Benton & Antoni G. Wrobel & Pengqi Xu & Chloë Roustan & Stephen R. Martin & Peter B. Rosenthal & John J. Skehel & Steven J. Gamblin, 2020. "Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion," Nature, Nature, vol. 588(7837), pages 327-330, December.
    3. Jan E. Carette & Matthijs Raaben & Anthony C. Wong & Andrew S. Herbert & Gregor Obernosterer & Nirupama Mulherkar & Ana I. Kuehne & Philip J. Kranzusch & April M. Griffin & Gordon Ruthel & Paola Dal C, 2011. "Ebola virus entry requires the cholesterol transporter Niemann–Pick C1," Nature, Nature, vol. 477(7364), pages 340-343, September.
    4. Marceline Côté & John Misasi & Tao Ren & Anna Bruchez & Kyungae Lee & Claire Marie Filone & Lisa Hensley & Qi Li & Daniel Ory & Kartik Chandran & James Cunningham, 2011. "Small molecule inhibitors reveal Niemann–Pick C1 is essential for Ebola virus infection," Nature, Nature, vol. 477(7364), pages 344-348, September.
    5. Jing Zhang & Bin Wang & Xiaoxiao Gao & Cheng Peng & Chao Shan & Silas F. Johnson & Richard C. Schwartz & Yong-Hui Zheng, 2022. "RNF185 regulates proteostasis in Ebolavirus infection by crosstalk between the calnexin cycle, ERAD, and reticulophagy," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Fan Wu & Su Zhao & Bin Yu & Yan-Mei Chen & Wen Wang & Zhi-Gang Song & Yi Hu & Zhao-Wu Tao & Jun-Hua Tian & Yuan-Yuan Pei & Ming-Li Yuan & Yu-Ling Zhang & Fa-Hui Dai & Yi Liu & Qi-Min Wang & Jiao-Jiao , 2020. "A new coronavirus associated with human respiratory disease in China," Nature, Nature, vol. 579(7798), pages 265-269, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naoko Iwata-Yoshikawa & Masatoshi Kakizaki & Nozomi Shiwa-Sudo & Takashi Okura & Maino Tahara & Shuetsu Fukushi & Ken Maeda & Miyuki Kawase & Hideki Asanuma & Yuriko Tomita & Ikuyo Takayama & Shutoku , 2022. "Essential role of TMPRSS2 in SARS-CoV-2 infection in murine airways," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Giulia Orilisi & Marco Mascitti & Lucrezia Togni & Riccardo Monterubbianesi & Vincenzo Tosco & Flavia Vitiello & Andrea Santarelli & Angelo Putignano & Giovanna Orsini, 2021. "Oral Manifestations of COVID-19 in Hospitalized Patients: A Systematic Review," IJERPH, MDPI, vol. 18(23), pages 1-19, November.
    3. David Gomez-Zepeda & Danielle Arnold-Schild & Julian Beyrle & Arthur Declercq & Ralf Gabriels & Elena Kumm & Annica Preikschat & Mateusz Krzysztof Łącki & Aurélie Hirschler & Jeewan Babu Rijal & Chris, 2024. "Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS2Rescore with MS2PIP timsTOF fragmentation prediction model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Alessandro Germani & Livia Buratta & Elisa Delvecchio & Claudia Mazzeschi, 2020. "Emerging Adults and COVID-19: The Role of Individualism-Collectivism on Perceived Risks and Psychological Maladjustment," IJERPH, MDPI, vol. 17(10), pages 1-15, May.
    5. Gabriela Dias Noske & Yun Song & Rafaela Sachetto Fernandes & Rod Chalk & Haitem Elmassoudi & Lizbé Koekemoer & C. David Owen & Tarick J. El-Baba & Carol V. Robinson & Glaucius Oliva & Andre Schutzer , 2023. "An in-solution snapshot of SARS-COV-2 main protease maturation process and inhibition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Eugene Song & Jae-Eun Lee & Seola Kwon, 2021. "Effect of Public Empathy with Infection-Control Guidelines on Infection-Prevention Attitudes and Behaviors: Based on the Case of COVID-19," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    7. Kow-Tong Chen, 2022. "Emerging Infectious Diseases and One Health: Implication for Public Health," IJERPH, MDPI, vol. 19(15), pages 1-4, July.
    8. Shujuan Li & Lingli Zhu & Lidan Zhang & Guoyan Zhang & Hongyan Ren & Liang Lu, 2023. "Urbanization-Related Environmental Factors and Hemorrhagic Fever with Renal Syndrome: A Review Based on Studies Taken in China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    9. Umit Cirakli & Ibrahim Dogan & Mehmet Gozlu, 2022. "The Relationship Between COVID-19 Cases and COVID-19 Testing: a Panel Data Analysis on OECD Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(3), pages 1737-1750, September.
    10. Neeltje van Doremalen & Jonathan E. Schulz & Danielle R. Adney & Taylor A. Saturday & Robert J. Fischer & Claude Kwe Yinda & Nazia Thakur & Joseph Newman & Marta Ulaszewska & Sandra Belij-Rammerstorfe, 2022. "ChAdOx1 nCoV-19 (AZD1222) or nCoV-19-Beta (AZD2816) protect Syrian hamsters against Beta Delta and Omicron variants," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Jaeyong Lee & Calem Kenward & Liam J. Worrall & Marija Vuckovic & Francesco Gentile & Anh-Tien Ton & Myles Ng & Artem Cherkasov & Natalie C. J. Strynadka & Mark Paetzel, 2022. "X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Seán R. O’Connor & Charlene Treanor & Elizabeth Ward & Robin A. Wickens & Abby O’Connell & Lucy A. Culliford & Chris A. Rogers & Eleanor A. Gidman & Tunde Peto & Paul C. Knox & Benjamin J. L. Burton &, 2022. "The COVID-19 Pandemic and Ophthalmic Care: A Qualitative Study of Patients with Neovascular Age-Related Macular Degeneration (nAMD)," IJERPH, MDPI, vol. 19(15), pages 1-10, August.
    13. Maria de Lourdes Aguiar-Oliveira & Aline Campos & Aline R. Matos & Caroline Rigotto & Adriana Sotero-Martins & Paulo F. P. Teixeira & Marilda M. Siqueira, 2020. "Wastewater-Based Epidemiology (WBE) and Viral Detection in Polluted Surface Water: A Valuable Tool for COVID-19 Surveillance—A Brief Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    14. Wasim Ahmed & Josep Vidal-Alaball & Francesc Lopez Segui & Pedro A. Moreno-Sánchez, 2020. "A Social Network Analysis of Tweets Related to Masks during the COVID-19 Pandemic," IJERPH, MDPI, vol. 17(21), pages 1-9, November.
    15. Ben Zhang & Chenxu Ming, 2023. "Digital Transformation and Open Innovation Planning of Response to COVID-19 Outbreak: A Systematic Literature Review and Future Research Agenda," IJERPH, MDPI, vol. 20(3), pages 1-26, February.
    16. Yongin Choi & James Slghee Kim & Heejin Choi & Hyojung Lee & Chang Hyeong Lee, 2020. "Assessment of Social Distancing for Controlling COVID-19 in Korea: An Age-Structured Modeling Approach," IJERPH, MDPI, vol. 17(20), pages 1-16, October.
    17. Shankar Shambhu & Deepika Koundal & Prasenjit Das & Chetan Sharma, 2021. "Binary Classification of COVID-19 CT Images Using CNN: COVID Diagnosis Using CT," International Journal of E-Health and Medical Communications (IJEHMC), IGI Global, vol. 13(2), pages 1-13, July.
    18. Mengyue Yuan & Tong Liu & Chao Yang, 2022. "Exploring the Relationship among Human Activities, COVID-19 Morbidity, and At-Risk Areas Using Location-Based Social Media Data: Knowledge about the Early Pandemic Stage in Wuhan," IJERPH, MDPI, vol. 19(11), pages 1-22, May.
    19. Peter Radvak & Hyung-Joon Kwon & Martina Kosikova & Uriel Ortega-Rodriguez & Ruoxuan Xiang & Je-Nie Phue & Rong-Fong Shen & James Rozzelle & Neeraj Kapoor & Taylor Rabara & Jeff Fairman & Hang Xie, 2021. "SARS-CoV-2 B.1.1.7 (alpha) and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice distinct from early strains," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    20. Bruno Palialol & Paula Pereda & Carlos Azzoni, 2020. "Does weather influence COVID‐19 transmission?," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 981-1004, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44504-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.