IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55478-2.html
   My bibliography  Save this article

Superselective embolic particle guidance in vessel networks via shape-adaptive acoustic manipulation

Author

Listed:
  • Yucheng Luo

    (Shanghai Jiao Tong University)

  • Qiu Yin

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Keke Chen

    (Shanghai Jiao Tong University)

  • Zhaoyu Deng

    (Nanjing University)

  • Xiaozhou Liu

    (Nanjing University)

  • Yinning Zhou

    (University of Macau)

  • Benpeng Zhu

    (Huazhong University of Science and Technology)

  • Wenming Zhang

    (Shanghai Jiao Tong University)

  • Zhichao Ma

    (Shanghai Jiao Tong University)

Abstract

Interventional embolization has been widely used as a clinical cancer therapy, which deactivates the tumors by occluding their blood supply vessels. However, conventional methods lack active control over the embolic particles, thus having a limited selectivity of millimeter-scale vessels and the issue of missing embolization. Here, we propose an ultrasound-based method for embolic particle control in submillimeter vessels. The biocompatible ultrasound generated from an extrasomatic source can transmit through biological tissues, and exert forces on the intravital embolic particles. We show that the particles, influenced by these forces, are steerable to the target branch at vascular bifurcations. By modulating the ultrasound to adapt the vascular bifurcation distribution, the particles flowing in the micro-vessel networks are steered to the target branch and embolize it. The acoustic steering within ex vivo and in vivo models both verify the potential of this non-invasive particle control for precise and safe interventional therapy.

Suggested Citation

  • Yucheng Luo & Qiu Yin & Keke Chen & Zhaoyu Deng & Xiaozhou Liu & Yinning Zhou & Benpeng Zhu & Wenming Zhang & Zhichao Ma, 2025. "Superselective embolic particle guidance in vessel networks via shape-adaptive acoustic manipulation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55478-2
    DOI: 10.1038/s41467-024-55478-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55478-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55478-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph Rufo & Peiran Zhang & Ruoyu Zhong & Luke P. Lee & Tony Jun Huang, 2022. "A sound approach to advancing healthcare systems: the future of biomedical acoustics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Kai Melde & Andrew G. Mark & Tian Qiu & Peer Fischer, 2016. "Holograms for acoustics," Nature, Nature, vol. 537(7621), pages 518-522, September.
    3. Zhichao Ma & Kai Melde & Athanasios G. Athanassiadis & Michael Schau & Harald Richter & Tian Qiu & Peer Fischer, 2020. "Spatial ultrasound modulation by digitally controlling microbubble arrays," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    4. Asier Marzo & Sue Ann Seah & Bruce W. Drinkwater & Deepak Ranjan Sahoo & Benjamin Long & Sriram Subramanian, 2015. "Holographic acoustic elements for manipulation of levitated objects," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    5. Ye Yang & Yaozhang Yang & Dingyuan Liu & Yuanyuan Wang & Minqiao Lu & Qi Zhang & Jiqing Huang & Yongchuan Li & Teng Ma & Fei Yan & Hairong Zheng, 2023. "In-vivo programmable acoustic manipulation of genetically engineered bacteria," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruoqin Zhang & Xichuan Zhao & Jinzhi Li & Di Zhou & Honglian Guo & Zhi-yuan Li & Feng Li, 2024. "Programmable photoacoustic patterning of microparticles in air," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Mahdi Derayatifar & Mohsen Habibi & Rama Bhat & Muthukumaran Packirisamy, 2024. "Holographic direct sound printing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Liang Shen & Zhenhua Tian & Kaichun Yang & Joseph Rich & Jianping Xia & Neil Upreti & Jinxin Zhang & Chuyi Chen & Nanjing Hao & Zhichao Pei & Tony Jun Huang, 2024. "Joint subarray acoustic tweezers enable controllable cell translation, rotation, and deformation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Matthew Stein & Sam Keller & Yujie Luo & Ognjen Ilic, 2022. "Shaping contactless radiation forces through anomalous acoustic scattering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Alexia Campo Fonseca & Chaim Glück & Jeanne Droux & Yann Ferry & Carole Frei & Susanne Wegener & Bruno Weber & Mohamad El Amki & Daniel Ahmed, 2023. "Ultrasound trapping and navigation of microrobots in the mouse brain vasculature," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Sushruta Surappa & Suraj Pavagada & Fernando Soto & Demir Akin & Charles Wei & F. Levent Degertekin & Utkan Demirci, 2025. "Dynamically reconfigurable acoustofluidic metasurface for subwavelength particle manipulation and assembly," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    7. Jakub Janiak & Yuyang Li & Yann Ferry & Alexander A. Doinikov & Daniel Ahmed, 2023. "Acoustic microbubble propulsion, train-like assembly and cargo transport," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Xueyan Chen & Qianqian Ding & Chao Bi & Jian Ruan & Shikuan Yang, 2022. "Lossless enrichment of trace analytes in levitating droplets for multiphase and multiplex detection," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Yurou Jia & Suying Zhang & Xuan Zhang & Houyou Long & Caibin Xu & Yechao Bai & Ying Cheng & Dajian Wu & Mingxi Deng & Cheng-Wei Qiu & Xiaojun Liu, 2024. "Compact meta-differentiator for achieving isotropically high-contrast ultrasonic imaging," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Ye Yang & Yaozhang Yang & Dingyuan Liu & Yuanyuan Wang & Minqiao Lu & Qi Zhang & Jiqing Huang & Yongchuan Li & Teng Ma & Fei Yan & Hairong Zheng, 2023. "In-vivo programmable acoustic manipulation of genetically engineered bacteria," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Mia Kvåle Løvmo & Shiyu Deng & Simon Moser & Rainer Leitgeb & Wolfgang Drexler & Monika Ritsch-Marte, 2024. "Ultrasound-induced reorientation for multi-angle optical coherence tomography," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Changdong Chen & Xiao Li & Weimian Li & Ming Xue & Yaoyao Shi & Daxing Dong & Yadong Xu & Youwen Liu & Yangyang Fu, 2024. "Super-resolution acoustic displacement metrology through topological pairs in orbital meta-atoms," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Mohsen Habibi & Shervin Foroughi & Vahid Karamzadeh & Muthukumaran Packirisamy, 2022. "Direct sound printing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Zong-Lin Li & Kun Chen & Fei Li & Zhi-Jun Shi & Qi-Li Sun & Peng-Qi Li & Yu-Gui Peng & Lai-Xin Huang & Guang Yang & Hairong Zheng & Xue-Feng Zhu, 2023. "Decorated bacteria-cellulose ultrasonic metasurface," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Z. A. Arnon & S. Piperno & D. C. Redeker & E. Randall & A. V. Tkachenko & H. Shpaisman & O. Gang, 2024. "Acoustically shaped DNA-programmable materials," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Antoine Aubret & Quentin Martinet & Jeremie Palacci, 2021. "Metamachines of pluripotent colloids," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    17. Xiao Li & Yongyin Cao & Jack Ng, 2024. "Non-Hermitian non-equipartition theory for trapped particles," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Erqian Dong & Tianye Zhang & Jinhu Zhang & Xiaochun Su & Sichao Qu & Xin Ye & Zhanyuan Gao & Chengtian Gao & Jiangang Hui & Zhanxiang Wang & Nicholas X. Fang & Yu Zhang, 2025. "Soft Metalens for Broadband Ultrasonic Focusing through Aberration Layers," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    19. Zhiyuan Zhang & Alexander Sukhov & Jens Harting & Paolo Malgaretti & Daniel Ahmed, 2022. "Rolling microswarms along acoustic virtual walls," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Mengxi Wu & Zhiteng Ma & Xianchen Xu & Brandon Lu & Yuyang Gu & Janghoon Yoon & Jianping Xia & Zhehan Ma & Neil Upreti & Imran J. Anwar & Stuart J. Knechtle & Eileen T. Chambers & Jean Kwun & Luke P. , 2024. "Acoustofluidic-based therapeutic apheresis system," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55478-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.