IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18347-2.html
   My bibliography  Save this article

Spatial ultrasound modulation by digitally controlling microbubble arrays

Author

Listed:
  • Zhichao Ma

    (Max Planck Institute for Intelligent Systems)

  • Kai Melde

    (Max Planck Institute for Intelligent Systems)

  • Athanasios G. Athanassiadis

    (Max Planck Institute for Intelligent Systems)

  • Michael Schau

    (Institut für Mikroelektronik Stuttgart)

  • Harald Richter

    (Institut für Mikroelektronik Stuttgart)

  • Tian Qiu

    (Max Planck Institute for Intelligent Systems
    University of Stuttgart)

  • Peer Fischer

    (Max Planck Institute for Intelligent Systems
    University of Stuttgart)

Abstract

Acoustic waves, capable of transmitting through optically opaque objects, have been widely used in biomedical imaging, industrial sensing and particle manipulation. High-fidelity wave front shaping is essential to further improve performance in these applications. An acoustic analog to the successful spatial light modulator (SLM) in optics would be highly desirable. To date there have been no techniques shown that provide effective and dynamic modulation of a sound wave and which also support scale-up to a high number of individually addressable pixels. In the present study, we introduce a dynamic spatial ultrasound modulator (SUM), which dynamically reshapes incident plane waves into complex acoustic images. Its transmission function is set with a digitally generated pattern of microbubbles controlled by a complementary metal–oxide–semiconductor (CMOS) chip, which results in a binary amplitude acoustic hologram. We employ this device to project sequentially changing acoustic images and demonstrate the first dynamic parallel assembly of microparticles using a SUM.

Suggested Citation

  • Zhichao Ma & Kai Melde & Athanasios G. Athanassiadis & Michael Schau & Harald Richter & Tian Qiu & Peer Fischer, 2020. "Spatial ultrasound modulation by digitally controlling microbubble arrays," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18347-2
    DOI: 10.1038/s41467-020-18347-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18347-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18347-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruoqin Zhang & Xichuan Zhao & Jinzhi Li & Di Zhou & Honglian Guo & Zhi-yuan Li & Feng Li, 2024. "Programmable photoacoustic patterning of microparticles in air," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18347-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.