IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26699-6.html
   My bibliography  Save this article

Metamachines of pluripotent colloids

Author

Listed:
  • Antoine Aubret

    (University of California San Diego
    University of Bordeaux, CNRS, LOMA)

  • Quentin Martinet

    (University of California San Diego
    IST Austria)

  • Jeremie Palacci

    (University of California San Diego
    IST Austria)

Abstract

Machines enabled the Industrial Revolution and are central to modern technological progress: A machine’s parts transmit forces, motion, and energy to one another in a predetermined manner. Today’s engineering frontier, building artificial micromachines that emulate the biological machinery of living organisms, requires faithful assembly and energy consumption at the microscale. Here, we demonstrate the programmable assembly of active particles into autonomous metamachines using optical templates. Metamachines, or machines made of machines, are stable, mobile and autonomous architectures, whose dynamics stems from the geometry. We use the interplay between anisotropic force generation of the active colloids with the control of their orientation by local geometry. This allows autonomous reprogramming of active particles of the metamachines to achieve multiple functions. It permits the modular assembly of metamachines by fusion, reconfiguration of metamachines and, we anticipate, a shift in focus of self-assembly towards active matter and reprogrammable materials.

Suggested Citation

  • Antoine Aubret & Quentin Martinet & Jeremie Palacci, 2021. "Metamachines of pluripotent colloids," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26699-6
    DOI: 10.1038/s41467-021-26699-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26699-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26699-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhe Gong & Theodore Hueckel & Gi-Ra Yi & Stefano Sacanna, 2017. "Patchy particles made by colloidal fusion," Nature, Nature, vol. 550(7675), pages 234-238, October.
    2. Michel Fruchart & Ryo Hanai & Peter B. Littlewood & Vincenzo Vitelli, 2021. "Non-reciprocal phase transitions," Nature, Nature, vol. 592(7854), pages 363-369, April.
    3. Jochen Arlt & Vincent A. Martinez & Angela Dawson & Teuta Pilizota & Wilson C. K. Poon, 2018. "Painting with light-powered bacteria," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    4. Mena Youssef & Theodore Hueckel & Gi-Ra Yi & Stefano Sacanna, 2016. "Shape-shifting colloids via stimulated dewetting," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    5. Kai Melde & Andrew G. Mark & Tian Qiu & Peer Fischer, 2016. "Holograms for acoustics," Nature, Nature, vol. 537(7621), pages 518-522, September.
    6. Debarghya Banerjee & Anton Souslov & Alexander G. Abanov & Vincenzo Vitelli, 2017. "Odd viscosity in chiral active fluids," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    7. Qian Chen & Sung Chul Bae & Steve Granick, 2011. "Directed self-assembly of a colloidal kagome lattice," Nature, Nature, vol. 469(7330), pages 381-384, January.
    8. Shuguang Li & Richa Batra & David Brown & Hyun-Dong Chang & Nikhil Ranganathan & Chuck Hoberman & Daniela Rus & Hod Lipson, 2019. "Particle robotics based on statistical mechanics of loosely coupled components," Nature, Nature, vol. 567(7748), pages 361-365, March.
    9. David G. Grier, 2003. "A revolution in optical manipulation," Nature, Nature, vol. 424(6950), pages 810-816, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruoqin Zhang & Xichuan Zhao & Jinzhi Li & Di Zhou & Honglian Guo & Zhi-yuan Li & Feng Li, 2024. "Programmable photoacoustic patterning of microparticles in air," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Liang Shen & Zhenhua Tian & Kaichun Yang & Joseph Rich & Jianping Xia & Neil Upreti & Jinxin Zhang & Chuyi Chen & Nanjing Hao & Zhichao Pei & Tony Jun Huang, 2024. "Joint subarray acoustic tweezers enable controllable cell translation, rotation, and deformation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Xiao Li & Yongyin Cao & Jack Ng, 2024. "Non-Hermitian non-equipartition theory for trapped particles," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Alberto Dinelli & Jérémy O’Byrne & Agnese Curatolo & Yongfeng Zhao & Peter Sollich & Julien Tailleur, 2023. "Non-reciprocity across scales in active mixtures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Li Liu & Ying Fang & Qingsheng Huang & Jianhua Wu, 2011. "A Rigidity-Enhanced Antimicrobial Activity: A Case for Linear Cationic α-Helical Peptide HP(2–20) and Its Four Analogues," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    6. Chenhao Li & Torsten Wieduwilt & Fedja J. Wendisch & Andrés Márquez & Leonardo de S. Menezes & Stefan A. Maier & Markus A. Schmidt & Haoran Ren, 2023. "Metafiber transforming arbitrarily structured light," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Alvin Modin & Matan Yah Zion & Paul M. Chaikin, 2023. "Hydrodynamic spin-orbit coupling in asynchronous optically driven micro-rotors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Djoko, M. & Tabi, Conrad Bertrand & Kofane, T.C., 2021. "Effects of the septic nonlinearity and the initial value of the radius of orbital angular momentum beams on data transmission in optical fibers using the cubic-quintic-septic complex Ginzburg-Landau e," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    9. Yangrui Chen & Jie Zhang, 2024. "Anomalous flocking in nonpolar granular Brownian vibrators," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Wu, You & He, Shangling & Wu, Jinhong & Lin, Zejia & Chen, Libang & Qiu, Huixin & Liu, Yujun & Hong, Shihan & Chen, Kaihui & Fu, Xinming & Xu, Chuangjie & He, Yingji & Deng, Dongmei, 2021. "Autofocusing Pearcey-like vortex beam along a parabolic trajectory," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. Jing Wang & Gao Wang & Huaicheng Chen & Yanping Liu & Peilong Wang & Daming Yuan & Xingyu Ma & Xiangyu Xu & Zhengdong Cheng & Baohua Ji & Mingcheng Yang & Jianwei Shuai & Fangfu Ye & Jin Wang & Yang J, 2024. "Robo-Matter towards reconfigurable multifunctional smart materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. C. J. O. Reichhardt & C. Reichhardt, 2022. "Dynamic phases and reentrant Hall effect for vortices and skyrmions on periodic pinning arrays," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-16, August.
    13. Piet J. M. Swinkels & Zhe Gong & Stefano Sacanna & Eva G. Noya & Peter Schall, 2023. "Visualizing defect dynamics by assembling the colloidal graphene lattice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Federico Pratissoli & Andreagiovanni Reina & Yuri Kaszubowski Lopes & Carlo Pinciroli & Genki Miyauchi & Lorenzo Sabattini & Roderich Groß, 2023. "Coherent movement of error-prone individuals through mechanical coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Zhang, Haonan & Duan, Buren & Wu, Lizhi & Hua, Zuohao & Bao, Zijing & Guo, Ning & Ye, Yinghua & Galfetti, Luciano & DeLuca, Luigi T. & Shen, Ruiqi, 2021. "Actualization of an efficient throttleable laser propulsion mode," Energy, Elsevier, vol. 221(C).
    16. Wu, Zihua & Zhang, Yinxing & Bao, Han & Lan, Rushi & Hua, Zhongyun, 2024. "nD-CS: A circularly shifting chaotic map generation method," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    17. Yurou Jia & Suying Zhang & Xuan Zhang & Houyou Long & Caibin Xu & Yechao Bai & Ying Cheng & Dajian Wu & Mingxi Deng & Cheng-Wei Qiu & Xiaojun Liu, 2024. "Compact meta-differentiator for achieving isotropically high-contrast ultrasonic imaging," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. David T. Limmer & Chloe Y. Gao & Anthony R. Poggioli, 2021. "A large deviation theory perspective on nanoscale transport phenomena," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(7), pages 1-16, July.
    19. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Jyoti Prasad Banerjee & Rituparno Mandal & Deb Sankar Banerjee & Shashi Thutupalli & Madan Rao, 2022. "Unjamming and emergent nonreciprocity in active ploughing through a compressible viscoelastic fluid," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26699-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.