IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55271-1.html
   My bibliography  Save this article

Skillful seasonal predictions of continental East-Asian summer rainfall by integrating its spatio-temporal evolution

Author

Listed:
  • Jieru Ma

    (Chinese Academy of Meteorological Sciences)

  • Hong-Li Ren

    (Chinese Academy of Meteorological Sciences)

  • Ming Cai

    (Florida State University)

  • Yi Deng

    (Georgia Institute of Technology)

  • Chenguang Zhou

    (Chinese Academy of Meteorological Sciences)

  • Jian Li

    (Chinese Academy of Meteorological Sciences)

  • Huizheng Che

    (Chinese Academy of Meteorological Sciences)

  • Lin Wang

    (Chinese Academy of Meteorological Sciences)

Abstract

Skillful seasonal climate prediction is critical for food and water security over the world’s heavily populated regions, such as in continental East Asia. Current models, however, face significant difficulties in predicting the summer mean rainfall anomaly over continental East Asia, and forecasting rainfall spatiotemporal evolution presents an even greater challenge. Here, we benefit from integrating the spatiotemporal evolution of rainfall to identify the most crucial patterns intrinsic to continental East-Asian rainfall anomalies. A physical-statistical prediction model is developed to capture the predictability offered by these patterns through a detection of precursor signals that describe slowly varying lower boundary conditions. The presented model demonstrates a prediction skill of 0.51, at least twice as high as that of the best dynamical models available (0.26), indicating improved prediction for both the spatiotemporal evolution and summer mean of rainfall anomalies. This advance marks a crucial step toward delivering skillful seasonal predictions to populations in need of new tools for managing risks of both near-term climate disasters, such as floods and droughts, and long-term climate change.

Suggested Citation

  • Jieru Ma & Hong-Li Ren & Ming Cai & Yi Deng & Chenguang Zhou & Jian Li & Huizheng Che & Lin Wang, 2025. "Skillful seasonal predictions of continental East-Asian summer rainfall by integrating its spatio-temporal evolution," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55271-1
    DOI: 10.1038/s41467-024-55271-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55271-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55271-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bin Wang & Baoqiang Xiang & Juan Li & Peter J. Webster & Madhavan N. Rajeevan & Jian Liu & Kyung-Ja Ha, 2015. "Rethinking Indian monsoon rainfall prediction in the context of recent global warming," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    2. Daokai Xue & Jian Lu & L. Ruby Leung & Haiyan Teng & Fengfei Song & Tianjun Zhou & Yaocun Zhang, 2023. "Robust projection of East Asian summer monsoon rainfall based on dynamical modes of variability," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Toshichika Iizumi & Hirofumi Sakuma & Masayuki Yokozawa & Jing-Jia Luo & Andrew J. Challinor & Molly E. Brown & Gen Sakurai & Toshio Yamagata, 2013. "Prediction of seasonal climate-induced variations in global food production," Nature Climate Change, Nature, vol. 3(10), pages 904-908, October.
    4. H. Kim & Y. G. Ham & Y. S. Joo & S. W. Son, 2021. "Deep learning for bias correction of MJO prediction," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    5. Nick Dunstone & Doug M. Smith & Steven C. Hardiman & Paul Davies & Sarah Ineson & Shipra Jain & Chris Kent & Gill Martin & Adam A. Scaife, 2023. "Windows of opportunity for predicting seasonal climate extremes highlighted by the Pakistan floods of 2022," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Bin Wang & Baoqiang Xiang & Juan Li & Peter J. Webster & Madhavan N. Rajeevan & Jian Liu & Kyung-Ja Ha, 2015. "Correction: Corrigendum: Rethinking Indian monsoon rainfall prediction in the context of recent global warming," Nature Communications, Nature, vol. 6(1), pages 1-1, November.
    7. Yoo-Geun Ham & Jeong-Hwan Kim & Jing-Jia Luo, 2019. "Deep learning for multi-year ENSO forecasts," Nature, Nature, vol. 573(7775), pages 568-572, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weston Anderson & Shraddhanand Shukla & Jim Verdin & Andrew Hoell & Christina Justice & Brian Barker & Kimberly Slinski & Nathan Lenssen & Jiale Lou & Benjamin I. Cook & Amy McNally, 2024. "Preseason maize and wheat yield forecasts for early warning of crop failure," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Lei Chen & Xiaohui Zhong & Hao Li & Jie Wu & Bo Lu & Deliang Chen & Shang-Ping Xie & Libo Wu & Qingchen Chao & Chensen Lin & Zixin Hu & Yuan Qi, 2024. "A machine learning model that outperforms conventional global subseasonal forecast models," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Tuantuan Zhang & Xingwen Jiang & Song Yang & Junwen Chen & Zhenning Li, 2022. "A predictable prospect of the South Asian summer monsoon," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Fenghua Ling & Jing-Jia Luo & Yue Li & Tao Tang & Lei Bai & Wanli Ouyang & Toshio Yamagata, 2022. "Multi-task machine learning improves multi-seasonal prediction of the Indian Ocean Dipole," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    6. Yuquan Qu & Diego G. Miralles & Sander Veraverbeke & Harry Vereecken & Carsten Montzka, 2023. "Wildfire precursors show complementary predictability in different timescales," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    8. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    9. Saeed Nosratabadi & Sina Ardabili & Zoltan Lakner & Csaba Mako & Amir Mosavi, 2021. "Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS," Papers 2104.14286, arXiv.org.
    10. Nazan An & Mustafa Tufan Turp & Murat Türkeş & Mehmet Levent Kurnaz, 2020. "Mid-Term Impact of Climate Change on Hazelnut Yield," Agriculture, MDPI, vol. 10(5), pages 1-20, May.
    11. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    12. Kung, Chih-Chun & Cao, Xiaoyong & Choi, Yongrok & Kung, Shan-Shan, 2019. "A stochastic analysis of cropland utilization and resource allocation under climate change," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    13. Haowei Ni & Han Hu & Constantin M. Zohner & Weigen Huang & Ji Chen & Yishen Sun & Jixian Ding & Jizhong Zhou & Xiaoyuan Yan & Jiabao Zhang & Yuting Liang & Thomas W. Crowther, 2024. "Effects of winter soil warming on crop biomass carbon loss from organic matter degradation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Kim, Daeha & Chun, Jong Ahn & Inthavong, Thavone, 2021. "Managing climate risks in a nutrient-deficient paddy rice field using seasonal climate forecasts and AquaCrop," Agricultural Water Management, Elsevier, vol. 256(C).
    15. Chao Li & Jieyu Liu & Fujun Du & Francis W. Zwiers & Guolin Feng, 2025. "Increasing certainty in projected local extreme precipitation change," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    16. Coulibaly, Saliya & Bessin, Florent & Clerc, Marcel G. & Mussot, Arnaud, 2022. "Precursors-driven machine learning prediction of chaotic extreme pulses in Kerr resonators," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    17. Nazan An & M Tufan Turp & M Tufan Turp & Murat Türkeş & M Levent Kurnaz & Murat Türkeş & M Levent Kurnaz, 2020. "Climate Change Effects on Agricultural Production- A Short Review," Current Investigations in Agriculture and Current Research, Lupine Publishers, LLC, vol. 8(3), pages 1097-1099, March.
    18. Xin Wei & Lulu Zhang & Junyao Luo & Dongsheng Liu, 2021. "A hybrid framework integrating physical model and convolutional neural network for regional landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 471-497, October.
    19. Mehebub Sahana & Sufia Rehman & Raihan Ahmed & Haroon Sajjad, 2021. "Analyzing climate variability and its effects in Sundarban Biosphere Reserve, India: reaffirmation from local communities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2465-2492, February.
    20. Villoria, Nelson B. & Delgado, Michael, 2017. "Worldwide Crop Supply Responses to El Niño Southern Oscillation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258564, Agricultural and Applied Economics Association.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55271-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.