IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v573y2019i7775d10.1038_s41586-019-1559-7.html
   My bibliography  Save this article

Deep learning for multi-year ENSO forecasts

Author

Listed:
  • Yoo-Geun Ham

    (Chonnam National University)

  • Jeong-Hwan Kim

    (Chonnam National University)

  • Jing-Jia Luo

    (Nanjing University of Information Science and Technology
    Chinese Academy of Sciences)

Abstract

Variations in the El Niño/Southern Oscillation (ENSO) are associated with a wide array of regional climate extremes and ecosystem impacts1. Robust, long-lead forecasts would therefore be valuable for managing policy responses. But despite decades of effort, forecasting ENSO events at lead times of more than one year remains problematic2. Here we show that a statistical forecast model employing a deep-learning approach produces skilful ENSO forecasts for lead times of up to one and a half years. To circumvent the limited amount of observation data, we use transfer learning to train a convolutional neural network (CNN) first on historical simulations3 and subsequently on reanalysis from 1871 to 1973. During the validation period from 1984 to 2017, the all-season correlation skill of the Nino3.4 index of the CNN model is much higher than those of current state-of-the-art dynamical forecast systems. The CNN model is also better at predicting the detailed zonal distribution of sea surface temperatures, overcoming a weakness of dynamical forecast models. A heat map analysis indicates that the CNN model predicts ENSO events using physically reasonable precursors. The CNN model is thus a powerful tool for both the prediction of ENSO events and for the analysis of their associated complex mechanisms.

Suggested Citation

  • Yoo-Geun Ham & Jeong-Hwan Kim & Jing-Jia Luo, 2019. "Deep learning for multi-year ENSO forecasts," Nature, Nature, vol. 573(7775), pages 568-572, September.
  • Handle: RePEc:nat:nature:v:573:y:2019:i:7775:d:10.1038_s41586-019-1559-7
    DOI: 10.1038/s41586-019-1559-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1559-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1559-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fenghua Ling & Jing-Jia Luo & Yue Li & Tao Tang & Lei Bai & Wanli Ouyang & Toshio Yamagata, 2022. "Multi-task machine learning improves multi-seasonal prediction of the Indian Ocean Dipole," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Li, Zhuo-Lin & Yu, Jie & Zhang, Xiao-Lin & Xu, Ling-Yu & Jin, Bao-Gang, 2022. "A Multi-Hierarchical attention-based prediction method on Time Series with spatio-temporal context among variables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    3. Wenxiang, Ding & Caiyun, Zhang & Shaoping, Shang & Xueding, Li, 2022. "Optimization of deep learning model for coastal chlorophyll a dynamic forecast," Ecological Modelling, Elsevier, vol. 467(C).
    4. Yan, Qing-dong & Chen, Xiu-qi & Jian, Hong-chao & Wei, Wei & Wang, Wei-da & Wang, Heng, 2022. "Design of a deep inference framework for required power forecasting and predictive control on a hybrid electric mining truck," Energy, Elsevier, vol. 238(PC).
    5. Arturs Kempelis & Inese Polaka & Andrejs Romanovs & Antons Patlins, 2024. "Computer Vision and Machine Learning-Based Predictive Analysis for Urban Agricultural Systems," Future Internet, MDPI, vol. 16(2), pages 1-14, January.
    6. Yuquan Qu & Diego G. Miralles & Sander Veraverbeke & Harry Vereecken & Carsten Montzka, 2023. "Wildfire precursors show complementary predictability in different timescales," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Xin Wei & Lulu Zhang & Junyao Luo & Dongsheng Liu, 2021. "A hybrid framework integrating physical model and convolutional neural network for regional landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 471-497, October.
    8. Wei Fang & Yu Sha & Victor S. Sheng, 2022. "Survey on the Application of Artificial Intelligence in ENSO Forecasting," Mathematics, MDPI, vol. 10(20), pages 1-22, October.
    9. Weston Anderson & Shraddhanand Shukla & Jim Verdin & Andrew Hoell & Christina Justice & Brian Barker & Kimberly Slinski & Nathan Lenssen & Jiale Lou & Benjamin I. Cook & Amy McNally, 2024. "Preseason maize and wheat yield forecasts for early warning of crop failure," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Cheng, Wei & Wang, Yan & Peng, Zheng & Ren, Xiaodong & Shuai, Yubei & Zang, Shengyin & Liu, Hao & Cheng, Hao & Wu, Jiagui, 2021. "High-efficiency chaotic time series prediction based on time convolution neural network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Yumin Liu & Kate Duffy & Jennifer G. Dy & Auroop R. Ganguly, 2023. "Explainable deep learning for insights in El Niño and river flows," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Coulibaly, Saliya & Bessin, Florent & Clerc, Marcel G. & Mussot, Arnaud, 2022. "Precursors-driven machine learning prediction of chaotic extreme pulses in Kerr resonators," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:573:y:2019:i:7775:d:10.1038_s41586-019-1559-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.