IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55078-0.html
   My bibliography  Save this article

Electrostatic in-plane structural superlubric actuator

Author

Listed:
  • Xuanyu Huang

    (Tsinghua University
    Research Institute of Tsinghua University in Shenzhen)

  • Xiaojian Xiang

    (Research Institute of Tsinghua University in Shenzhen)

  • Chuang Li

    (Tsinghua University
    Tsinghua University)

  • Jinhui Nie

    (Research Institute of Tsinghua University in Shenzhen)

  • Yifan Shao

    (Tsinghua University
    Tsinghua University)

  • Zhiping Xu

    (Research Institute of Tsinghua University in Shenzhen
    Tsinghua University
    Tsinghua University)

  • Quanshui Zheng

    (Tsinghua University
    Research Institute of Tsinghua University in Shenzhen
    Tsinghua University
    Tsinghua University)

Abstract

Micro actuators are widely used in NEMS/MEMS for control and sensing. However, most are designed with suspended beams anchored at fixed points, causing two main issues: restricted actuated stroke and movement modes, and reduced lifespan due to fatigue from repeated beam deformation, contact wear and stiction. Here, we develop an electrostatic in-plane actuator leveraging structural superlubric sliding interfaces, characterized by zero wear, ultralow friction, and no fixed anchor. The actuator features a micro-scale graphite flake in structural superlubric contact with silicon dioxide tracks, reducing friction from edge defects. Using the charge injection method, the structural superlubric actuator not only achieves a maximum relative actuation stroke of 82.3% of the flake size by applying voltage to buried electrodes—3.4 times larger than previously reported, but also enables controllable reciprocating actuation by adjusting the form of the bias voltage. Additionally, no visible wear was observed at the structural superlubric interface after over 10,000 sliding cycles, indicating robust reliability. Our work presents a design concept for micro actuators with high performance and durability, potentially guiding the development of many structural superlubric micro-devices.

Suggested Citation

  • Xuanyu Huang & Xiaojian Xiang & Chuang Li & Jinhui Nie & Yifan Shao & Zhiping Xu & Quanshui Zheng, 2025. "Electrostatic in-plane structural superlubric actuator," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55078-0
    DOI: 10.1038/s41467-024-55078-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55078-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55078-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shu-Wei Liu & Hua-Ping Wang & Qiang Xu & Tian-Bao Ma & Gui Yu & Chenhui Zhang & Dechao Geng & Zhiwei Yu & Shengguang Zhang & Wenzhong Wang & Yuan-Zhong Hu & Hui Wang & Jianbin Luo, 2017. "Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    2. Xuanyu Huang & Xiaojian Xiang & Jinhui Nie & Deli Peng & Fuwei Yang & Zhanghui Wu & Haiyang Jiang & Zhiping Xu & Quanshui Zheng, 2021. "Microscale Schottky superlubric generator with high direct-current density and ultralong life," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Xuanyu Huang & Tengfei Li & Jin Wang & Kai Xia & Zipei Tan & Deli Peng & Xiaojian Xiang & Bin Liu & Ming Ma & Quanshui Zheng, 2023. "Robust microscale structural superlubricity between graphite and nanostructured surface," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Xuanyu Huang & Xiaojian Xiang & Jinhui Nie & Deli Peng & Fuwei Yang & Zhanghui Wu & Haiyang Jiang & Zhiping Xu & Quanshui Zheng, 2021. "Author Correction: Microscale Schottky superlubric generator with high direct-current density and ultralong life," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    5. Oded Hod & Ernst Meyer & Quanshui Zheng & Michael Urbakh, 2018. "Structural superlubricity and ultralow friction across the length scales," Nature, Nature, vol. 563(7732), pages 485-492, November.
    6. Vera Sazonova & Yuval Yaish & Hande Üstünel & David Roundy & Tomás A. Arias & Paul L. McEuen, 2004. "A tunable carbon nanotube electromechanical oscillator," Nature, Nature, vol. 431(7006), pages 284-287, September.
    7. A. M. Fennimore & T. D. Yuzvinsky & Wei-Qiang Han & M. S. Fuhrer & J. Cumings & A. Zettl, 2003. "Rotational actuators based on carbon nanotubes," Nature, Nature, vol. 424(6947), pages 408-410, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuanyu Huang & Tengfei Li & Jin Wang & Kai Xia & Zipei Tan & Deli Peng & Xiaojian Xiang & Bin Liu & Ming Ma & Quanshui Zheng, 2023. "Robust microscale structural superlubricity between graphite and nanostructured surface," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Li Chen & Cong Lin & Diwei Shi & Xuanyu Huang & Quanshui Zheng & Jinhui Nie & Ming Ma, 2023. "Fully automatic transfer and measurement system for structural superlubric materials," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Taotao Sun & Enlai Gao & Xiangzheng Jia & Jinbo Bian & Zhou Wang & Ming Ma & Quanshui Zheng & Zhiping Xu, 2024. "Robust structural superlubricity under gigapascal pressures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Dhanola, Anil & Khanna, Navneet & Gajrani, Kishor Kumar, 2022. "A critical review on liquid superlubricitive technology for attaining ultra-low friction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Josef Schätz & Navin Nayi & Jonas Weber & Christoph Metzke & Sebastian Lukas & Jürgen Walter & Tim Schaffus & Fabian Streb & Eros Reato & Agata Piacentini & Annika Grundmann & Holger Kalisch & Michael, 2024. "Button shear testing for adhesion measurements of 2D materials," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Pengfei Xu & Dazhi Wang & Jianqiao He & Yichang Cui & Liangkun Lu & Yikang Li & Xiangji Chen & Chang Liu & Liujia Suo & Tongqun Ren & Tiesheng Wang & Yan Cui, 2024. "A zinc oxide resonant nano-accelerometer with ultra-high sensitivity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Yiming Song & Xiang Gao & Rémy Pawlak & Shuyu Huang & Antoine Hinaut & Thilo Glatzel & Oded Hod & Michael Urbakh & Ernst Meyer, 2024. "Non-Amontons frictional behaviors of grain boundaries at layered material interfaces," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Hengqian Hu & Jin Wang & Kaiwen Tian & Quanshui Zheng & Ming Ma, 2024. "The effects of disordered edge and vanishing friction in microscale structural superlubric graphite contact," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Eric Cereceda-López & Alexander P. Antonov & Artem Ryabov & Philipp Maass & Pietro Tierno, 2023. "Overcrowding induces fast colloidal solitons in a slowly rotating potential landscape," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Zhengyu Xu & Jiajun Lu & Di Lu & Yiran Li & Hai Lei & Bin Chen & Wenfei Li & Bin Xue & Yi Cao & Wei Wang, 2024. "Rapidly damping hydrogels engineered through molecular friction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Mayoof, Fathi N. & Hawwa, Muhammad A., 2009. "Chaotic behavior of a curved carbon nanotube under harmonic excitation," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1860-1867.
    14. Gus Greenwood & Jin Myung Kim & Shahriar Muhammad Nahid & Yeageun Lee & Amin Hajarian & SungWoo Nam & Rosa M. Espinosa-Marzal, 2023. "Dynamically tuning friction at the graphene interface using the field effect," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Ruiyun Li & Xing Yang & Jiacheng Li & Yongfu Wang & Ming Ma, 2024. "Macroscale, humidity-insensitive, and stable structural superlubricity achieved with hydrogen-free graphene nanoflakes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Utku Emre Ali & Gaurav Modi & Ritesh Agarwal & Harish Bhaskaran, 2022. "Real-time nanomechanical property modulation as a framework for tunable NEMS," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Yajie Hu & Hongyun Ma & Mingmao Wu & Tengyu Lin & Houze Yao & Feng Liu & Huhu Cheng & Liangti Qu, 2022. "A reconfigurable and magnetically responsive assembly for dynamic solar steam generation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55078-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.