IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49994-4.html
   My bibliography  Save this article

Acquisition of molecular rolling lubrication by self-curling of graphite nanosheet at cryogenic temperature

Author

Listed:
  • Panpan Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Wenhao He

    (Chinese Academy of Sciences)

  • Pengfei Ju

    (Shanghai Aerospace Equipment Manufacture)

  • Li Ji

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiaohong Liu

    (Chinese Academy of Sciences)

  • Fan Wu

    (Chinese Academy of Sciences)

  • Zhibin Lu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Hongxuan Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Lei Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jingzhou Liu

    (Shanghai Aerospace Equipment Manufacture)

  • Huidi Zhou

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jianmin Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Friction as a fundamental physical phenomenon dominates nature and human civilization, among which the achievement of molecular rolling lubrication is desired to bring another breakthrough, like the macroscale design of wheel. Herein, an edge self-curling nanodeformation phenomenon of graphite nanosheets (GNSs) at cryogenic temperature is found, which is then used to promote the formation of graphite nanorollers in friction process towards molecular rolling lubrication. The observation of parallel nanorollers at the friction interface give the experimental evidence for the occurrence of molecular rolling lubrication, and the graphite exhibits abnormal lubrication performance in vacuum with ultra-low friction and wear at macroscale. The molecular rolling lubrication mechanism is elucidated from the electronic interaction perspective. Experiments and theoretical simulations indicate that the driving force of the self-curling is the uneven atomic shrinkage induced stress, and then the shear force promotes the intact nanoroller formation, while the constraint of atomic vibration decreases the dissipation of driving stress and favors the nanoroller formation therein. It will open up a new pathway for controlling friction at microscale and nanostructural manipulation.

Suggested Citation

  • Panpan Li & Wenhao He & Pengfei Ju & Li Ji & Xiaohong Liu & Fan Wu & Zhibin Lu & Hongxuan Li & Lei Chen & Jingzhou Liu & Huidi Zhou & Jianmin Chen, 2024. "Acquisition of molecular rolling lubrication by self-curling of graphite nanosheet at cryogenic temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49994-4
    DOI: 10.1038/s41467-024-49994-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49994-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49994-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeong Min Park & Yuan Cao & Kenji Watanabe & Takashi Taniguchi & Pablo Jarillo-Herrero, 2021. "Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene," Nature, Nature, vol. 590(7845), pages 249-255, February.
    2. Xuanyu Huang & Tengfei Li & Jin Wang & Kai Xia & Zipei Tan & Deli Peng & Xiaojian Xiang & Bin Liu & Ming Ma & Quanshui Zheng, 2023. "Robust microscale structural superlubricity between graphite and nanostructured surface," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Carina Elisabeth Morstein & Andreas Klemenz & Martin Dienwiebel & Michael Moseler, 2022. "Humidity-dependent lubrication of highly loaded contacts by graphite and a structural transition to turbostratic carbon," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. L. Rapoport & Yu. Bilik & Y. Feldman & M. Homyonfer & S. R. Cohen & R. Tenne, 1997. "Hollow nanoparticles of WS2 as potential solid-state lubricants," Nature, Nature, vol. 387(6635), pages 791-793, June.
    5. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    6. Shu-Wei Liu & Hua-Ping Wang & Qiang Xu & Tian-Bao Ma & Gui Yu & Chenhui Zhang & Dechao Geng & Zhiwei Yu & Shengguang Zhang & Wenzhong Wang & Yuan-Zhong Hu & Hui Wang & Jianbin Luo, 2017. "Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    7. Oded Hod & Ernst Meyer & Quanshui Zheng & Michael Urbakh, 2018. "Structural superlubricity and ultralow friction across the length scales," Nature, Nature, vol. 563(7732), pages 485-492, November.
    8. Diana Berman & Badri Narayanan & Mathew J. Cherukara & Subramanian K. R. S. Sankaranarayanan & Ali Erdemir & Alexander Zinovev & Anirudha V. Sumant, 2018. "Operando tribochemical formation of onion-like-carbon leads to macroscale superlubricity," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuanyu Huang & Xiaojian Xiang & Chuang Li & Jinhui Nie & Yifan Shao & Zhiping Xu & Quanshui Zheng, 2025. "Electrostatic in-plane structural superlubric actuator," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Dhanola, Anil & Khanna, Navneet & Gajrani, Kishor Kumar, 2022. "A critical review on liquid superlubricitive technology for attaining ultra-low friction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Max Heyl & Kyosuke Adachi & Yuki M. Itahashi & Yuji Nakagawa & Yuichi Kasahara & Emil J. W. List-Kratochvil & Yusuke Kato & Yoshihiro Iwasa, 2022. "Vortex dynamics in the two-dimensional BCS-BEC crossover," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Jesse C. Hoke & Yifan Li & Julian May-Mann & Kenji Watanabe & Takashi Taniguchi & Barry Bradlyn & Taylor L. Hughes & Benjamin E. Feldman, 2024. "Uncovering the spin ordering in magic-angle graphene via edge state equilibration," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Gal Shavit & Stevan Nadj-Perge & Gil Refael, 2025. "Ephemeral superconductivity atop the false vacuum," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    6. Zhao Guan & Lu-qi Wei & Wen-cheng Fan & Yi-chen Sun & Wei Cao & Ming Tian & Neng Wan & Wen-yi Tong & Bin-bin Chen & Ping-hua Xiang & Chun-gang Duan & Ni Zhong, 2025. "Mechanical force-induced interlayer sliding in interfacial ferroelectrics," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    7. Hulin Yao & Pengcheng Zheng & Shibin Zhang & Chuanjie Hu & Xiaoli Fang & Liping Zhang & Dan Ling & Huanyang Chen & Xin Ou, 2024. "Twist piezoelectricity: giant electromechanical coupling in magic-angle twisted bilayer LiNbO3," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Changjiang Liu & Xianjing Zhou & Deshun Hong & Brandon Fisher & Hong Zheng & John Pearson & Jidong Samuel Jiang & Dafei Jin & Michael R. Norman & Anand Bhattacharya, 2023. "Tunable superconductivity and its origin at KTaO3 interfaces," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Benjamin Lowe & Bernard Field & Jack Hellerstedt & Julian Ceddia & Henry L. Nourse & Ben J. Powell & Nikhil V. Medhekar & Agustin Schiffrin, 2024. "Local gate control of Mott metal-insulator transition in a 2D metal-organic framework," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. LingNan Wei & Qingxin Li & Majeed Ur Rehman & Yangchen He & Dongdong An & Shiwei Li & Kenji Watanabe & Takashi Taniguchi & Martin Claassen & Kostya S. Novoselov & Dante M. Kennes & Angel Rubio & Danie, 2025. "Valley charge-transfer insulator in twisted double bilayer WSe2," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    11. Dacen Waters & Ruiheng Su & Ellis Thompson & Anna Okounkova & Esmeralda Arreguin-Martinez & Minhao He & Katherine Hinds & Kenji Watanabe & Takashi Taniguchi & Xiaodong Xu & Ya-Hui Zhang & Joshua Folk , 2024. "Topological flat bands in a family of multilayer graphene moiré lattices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Xuanyu Huang & Tengfei Li & Jin Wang & Kai Xia & Zipei Tan & Deli Peng & Xiaojian Xiang & Bin Liu & Ming Ma & Quanshui Zheng, 2023. "Robust microscale structural superlubricity between graphite and nanostructured surface," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Yuhao Ye & Jinhua Wang & Pan Nie & Huakun Zuo & Xiaokang Li & Kamran Behnia & Zengwei Zhu & Benoît Fauqué, 2024. "Tuning the BCS-BEC crossover of electron-hole pairing with pressure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Li Chen & Cong Lin & Diwei Shi & Xuanyu Huang & Quanshui Zheng & Jinhui Nie & Ming Ma, 2023. "Fully automatic transfer and measurement system for structural superlubric materials," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Taotao Sun & Enlai Gao & Xiangzheng Jia & Jinbo Bian & Zhou Wang & Ming Ma & Quanshui Zheng & Zhiping Xu, 2024. "Robust structural superlubricity under gigapascal pressures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Shubhayu Chatterjee & Taige Wang & Erez Berg & Michael P. Zaletel, 2022. "Inter-valley coherent order and isospin fluctuation mediated superconductivity in rhombohedral trilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Le Liu & Shihao Zhang & Yanbang Chu & Cheng Shen & Yuan Huang & Yalong Yuan & Jinpeng Tian & Jian Tang & Yiru Ji & Rong Yang & Kenji Watanabe & Takashi Taniguchi & Dongxia Shi & Jianpeng Liu & Wei Yan, 2022. "Isospin competitions and valley polarized correlated insulators in twisted double bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    18. J. González & T. Stauber, 2023. "Ising superconductivity induced from spin-selective valley symmetry breaking in twisted trilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    19. Dorri Halbertal & Simon Turkel & Christopher J. Ciccarino & Jonas B. Profe & Nathan Finney & Valerie Hsieh & Kenji Watanabe & Takashi Taniguchi & James Hone & Cory Dean & Prineha Narang & Abhay N. Pas, 2022. "Unconventional non-local relaxation dynamics in a twisted trilayer graphene moiré superlattice," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Dohun Kim & Seyoung Jin & Takashi Taniguchi & Kenji Watanabe & Jurgen H. Smet & Gil Young Cho & Youngwook Kim, 2025. "Observation of 1/3 fractional quantum Hall physics in balanced large angle twisted bilayer graphene," Nature Communications, Nature, vol. 16(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49994-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.