IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v431y2004i7006d10.1038_nature02905.html
   My bibliography  Save this article

A tunable carbon nanotube electromechanical oscillator

Author

Listed:
  • Vera Sazonova

    (Cornell University)

  • Yuval Yaish

    (Cornell University)

  • Hande Üstünel

    (Cornell University)

  • David Roundy

    (Cornell University)

  • Tomás A. Arias

    (Cornell University)

  • Paul L. McEuen

    (Cornell University)

Abstract

Nanoelectromechanical systems (NEMS) hold promise for a number of scientific and technological applications. In particular, NEMS oscillators have been proposed for use in ultrasensitive mass detection1,2, radio-frequency signal processing3,4, and as a model system for exploring quantum phenomena in macroscopic systems5,6. Perhaps the ultimate material for these applications is a carbon nanotube. They are the stiffest material known, have low density, ultrasmall cross-sections and can be defect-free. Equally important, a nanotube can act as a transistor7 and thus may be able to sense its own motion. In spite of this great promise, a room-temperature, self-detecting nanotube oscillator has not been realized, although some progress has been made8,9,10,11,12. Here we report the electrical actuation and detection of the guitar-string-like oscillation modes of doubly clamped nanotube oscillators. We show that the resonance frequency can be widely tuned and that the devices can be used to transduce very small forces.

Suggested Citation

  • Vera Sazonova & Yuval Yaish & Hande Üstünel & David Roundy & Tomás A. Arias & Paul L. McEuen, 2004. "A tunable carbon nanotube electromechanical oscillator," Nature, Nature, vol. 431(7006), pages 284-287, September.
  • Handle: RePEc:nat:nature:v:431:y:2004:i:7006:d:10.1038_nature02905
    DOI: 10.1038/nature02905
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02905
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Utku Emre Ali & Gaurav Modi & Ritesh Agarwal & Harish Bhaskaran, 2022. "Real-time nanomechanical property modulation as a framework for tunable NEMS," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Pengfei Xu & Dazhi Wang & Jianqiao He & Yichang Cui & Liangkun Lu & Yikang Li & Xiangji Chen & Chang Liu & Liujia Suo & Tongqun Ren & Tiesheng Wang & Yan Cui, 2024. "A zinc oxide resonant nano-accelerometer with ultra-high sensitivity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Mayoof, Fathi N. & Hawwa, Muhammad A., 2009. "Chaotic behavior of a curved carbon nanotube under harmonic excitation," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1860-1867.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:431:y:2004:i:7006:d:10.1038_nature02905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.