IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41989-x.html
   My bibliography  Save this article

Overcrowding induces fast colloidal solitons in a slowly rotating potential landscape

Author

Listed:
  • Eric Cereceda-López

    (Universitat de Barcelona
    Universitat de Barcelona (IN2UB))

  • Alexander P. Antonov

    (Universität Osnabrück, Fachbereich Physik)

  • Artem Ryabov

    (Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics)

  • Philipp Maass

    (Universität Osnabrück, Fachbereich Physik)

  • Pietro Tierno

    (Universitat de Barcelona
    Universitat de Barcelona (IN2UB)
    University of Barcelona Institute of Complex Systems (UBICS))

Abstract

Collective particle transport across periodic energy landscapes is ubiquitously present in many condensed matter systems spanning from vortices in high-temperature superconductors, frictional atomic sliding, driven skyrmions to biological and active matter. Here we report the emergence of fast solitons propagating against a rotating optical landscape. These experimentally observed solitons are stable cluster waves that originate from a coordinated particle exchange process which occurs when the number of trapped microparticles exceeds the number of potential wells. The size and speed of individual solitons rapidly increase with the particle diameter as predicted by theory and confirmed by numerical simulations. We show that when several solitons coexist, an effective repulsive interaction can stabilize their propagation along the periodic potential. Our experiments demonstrate a generic mechanism for cluster-mediated transport with potential applications to condensed matter systems on different length scales.

Suggested Citation

  • Eric Cereceda-López & Alexander P. Antonov & Artem Ryabov & Philipp Maass & Pietro Tierno, 2023. "Overcrowding induces fast colloidal solitons in a slowly rotating potential landscape," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41989-x
    DOI: 10.1038/s41467-023-41989-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41989-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41989-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yafei Zhang & Bo Li & Q. S. Zheng & Guy M. Genin & C. Q. Chen, 2019. "Programmable and robust static topological solitons in mechanical metamaterials," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. Alexandra Ros & Ralf Eichhorn & Jan Regtmeier & Thanh Tu Duong & Peter Reimann & Dario Anselmetti, 2005. "Absolute negative particle mobility," Nature, Nature, vol. 436(7053), pages 928-928, August.
    3. Immanuel Bloch, 2008. "Quantum coherence and entanglement with ultracold atoms in optical lattices," Nature, Nature, vol. 453(7198), pages 1016-1022, June.
    4. Eran Sharon & Gil Cohen & Jay Fineberg, 2001. "Propagating solitary waves along a rapidly moving crack front," Nature, Nature, vol. 410(6824), pages 68-71, March.
    5. Michael P.N. Juniper & Arthur V. Straube & Rut Besseling & Dirk G.A.L. Aarts & Roel P.A. Dullens, 2015. "Microscopic dynamics of synchronization in driven colloids," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    6. Kevin E. Strecker & Guthrie B. Partridge & Andrew G. Truscott & Randall G. Hulet, 2002. "Formation and propagation of matter-wave soliton trains," Nature, Nature, vol. 417(6885), pages 150-153, May.
    7. Bolei Deng & Pai Wang & Qi He & Vincent Tournat & Katia Bertoldi, 2018. "Metamaterials with amplitude gaps for elastic solitons," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    8. Peng Wang & Yuanlin Zheng & Xianfeng Chen & Changming Huang & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2020. "Localization and delocalization of light in photonic moiré lattices," Nature, Nature, vol. 577(7788), pages 42-46, January.
    9. Oded Hod & Ernst Meyer & Quanshui Zheng & Michael Urbakh, 2018. "Structural superlubricity and ultralow friction across the length scales," Nature, Nature, vol. 563(7732), pages 485-492, November.
    10. Demetrios N. Christodoulides & Falk Lederer & Yaron Silberberg, 2003. "Discretizing light behaviour in linear and nonlinear waveguide lattices," Nature, Nature, vol. 424(6950), pages 817-823, August.
    11. Sven Matthias & Frank Müller, 2003. "Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets," Nature, Nature, vol. 424(6944), pages 53-57, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonov, Alexander P. & Ryabov, Artem & Maass, Philipp, 2024. "Solitary cluster waves in periodic potentials: Formation, propagation, and soliton-mediated particle transport," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiuye & Zeng, Jianhua, 2022. "Overcoming the snaking instability and nucleation of dark solitons in nonlinear Kerr media by spatially inhomogeneous defocusing nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Chen, Junbo & Zeng, Jianhua, 2021. "Dark matter-wave gap solitons of Bose-Einstein condensates trapped in optical lattices with competing cubic-quintic nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Antonov, Alexander P. & Ryabov, Artem & Maass, Philipp, 2024. "Solitary cluster waves in periodic potentials: Formation, propagation, and soliton-mediated particle transport," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    4. Bai, Xiaoqin & Bai, Juan & Malomed, Boris A. & Yang, Rongcao, 2024. "Spectrum conversion and pattern preservation of Airy beams in fractional systems with a dynamical harmonic-oscillator potential," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Yiming Song & Xiang Gao & Rémy Pawlak & Shuyu Huang & Antoine Hinaut & Thilo Glatzel & Oded Hod & Michael Urbakh & Ernst Meyer, 2024. "Non-Amontons frictional behaviors of grain boundaries at layered material interfaces," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Lei Wu & Damiano Pasini, 2024. "Zero modes activation to reconcile floppiness, rigidity, and multistability into an all-in-one class of reprogrammable metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Zhaohui Dong & Xiaoxiong Wu & Yiwen Yang & Penghong Yu & Xianfeng Chen & Luqi Yuan, 2024. "Temporal multilayer structures in discrete physical systems towards arbitrary-dimensional non-Abelian Aharonov-Bohm interferences," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Hanyu Wang & Wei Xu & Zeyong Wei & Yiyuan Wang & Zhanshan Wang & Xinbin Cheng & Qinghua Guo & Jinhui Shi & Zhihong Zhu & Biao Yang, 2024. "Twisted photonic Weyl meta-crystals and aperiodic Fermi arc scattering," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Yang Yang & Robert J. Chapman & Ben Haylock & Francesco Lenzini & Yogesh N. Joglekar & Mirko Lobino & Alberto Peruzzo, 2024. "Programmable high-dimensional Hamiltonian in a photonic waveguide array," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Malomed, Boris A. & Nascimento, V.A. & Adhikari, Sadhan K., 2009. "Gap solitons in fermion superfluids," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(4), pages 648-659.
    11. Enze Wang & Zixin Xiong & Zekun Chen & Zeqin Xin & Huachun Ma & Hongtao Ren & Bolun Wang & Jing Guo & Yufei Sun & Xuewen Wang & Chenyu Li & Xiaoyan Li & Kai Liu, 2023. "Water nanolayer facilitated solitary-wave-like blisters in MoS2 thin films," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Fang, Yuwen & Luo, Yuhui & Zeng, Chunhua, 2022. "Dichotomous noise-induced negative mass and mobility of inertial Brownian particle," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    13. Tiancheng Zhang & Kaichen Dong & Jiachen Li & Fanhao Meng & Jingang Li & Sai Munagavalasa & Costas P. Grigoropoulos & Junqiao Wu & Jie Yao, 2023. "Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Gus Greenwood & Jin Myung Kim & Shahriar Muhammad Nahid & Yeageun Lee & Amin Hajarian & SungWoo Nam & Rosa M. Espinosa-Marzal, 2023. "Dynamically tuning friction at the graphene interface using the field effect," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Guoqiang Xu & Xue Zhou & Shuihua Yang & Jing Wu & Cheng-Wei Qiu, 2023. "Observation of bulk quadrupole in topological heat transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Wang, Qing & Zhou, Liangliang & Zhu, Junying & He, Jun-Rong, 2024. "Multi-vortex beams in nonlinear media with harmonic potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    17. Bao, Y.Y. & Li, S.R. & Liu, Y.H. & Xu, T.F., 2022. "Gap solitons and nonlinear Bloch waves in fractional quantum coupler with periodic potential," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    18. Natanael Karjanto, 2022. "Bright Soliton Solution of the Nonlinear Schrödinger Equation: Fourier Spectrum and Fundamental Characteristics," Mathematics, MDPI, vol. 10(23), pages 1-22, December.
    19. Nader Mostaan & Fabian Grusdt & Nathan Goldman, 2022. "Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Huang, Hao & Wang, Hongcheng & Chen, Manna & Lim, Chin Seong & Wong, Kok-Cheong, 2022. "Binary-vortex quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41989-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.