IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55240-8.html
   My bibliography  Save this article

Challenges in data-driven geospatial modeling for environmental research and practice

Author

Listed:
  • Diana Koldasbayeva

    (Skolkovo Institute of Science and Technology)

  • Polina Tregubova

    (Skolkovo Institute of Science and Technology)

  • Mikhail Gasanov

    (Skolkovo Institute of Science and Technology)

  • Alexey Zaytsev

    (Skolkovo Institute of Science and Technology
    Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA))

  • Anna Petrovskaia

    (Skolkovo Institute of Science and Technology)

  • Evgeny Burnaev

    (Skolkovo Institute of Science and Technology
    Autonomous Non-Profit Organization Artificial Intelligence Research Institute (AIRI))

Abstract

Machine learning-based geospatial applications offer unique opportunities for environmental monitoring due to domains and scales adaptability and computational efficiency. However, the specificity of environmental data introduces biases in straightforward implementations. We identify a streamlined pipeline to enhance model accuracy, addressing issues like imbalanced data, spatial autocorrelation, prediction errors, and the nuances of model generalization and uncertainty estimation. We examine tools and techniques for overcoming these obstacles and provide insights into future geospatial AI developments. A big picture of the field is completed from advances in data processing in general, including the demands of industry-related solutions relevant to outcomes of applied sciences.

Suggested Citation

  • Diana Koldasbayeva & Polina Tregubova & Mikhail Gasanov & Alexey Zaytsev & Anna Petrovskaia & Evgeny Burnaev, 2024. "Challenges in data-driven geospatial modeling for environmental research and practice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55240-8
    DOI: 10.1038/s41467-024-55240-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55240-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55240-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    2. Yee Leung & Chang-Lin Mei & Wen-Xiu Zhang, 2000. "Testing for Spatial Autocorrelation among the Residuals of the Geographically Weighted Regression," Environment and Planning A, , vol. 32(5), pages 871-890, May.
    3. Xiao-Yun Chen & Kwok-Wing Chau, 2019. "Uncertainty Analysis on Hybrid Double Feedforward Neural Network Model for Sediment Load Estimation with LUBE Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3563-3577, August.
    4. Seong-Hoon Cho & Dayton Lambert & Zhuo Chen, 2010. "Geographically weighted regression bandwidth selection and spatial autocorrelation: an empirical example using Chinese agriculture data," Applied Economics Letters, Taylor & Francis Journals, vol. 17(8), pages 767-772.
    5. Monique M. Kuglitsch & Ivanka Pelivan & Serena Ceola & Mythili Menon & Elena Xoplaki, 2022. "Facilitating adoption of AI in natural disaster management through collaboration," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
    6. Markus Reichstein & Gustau Camps-Valls & Bjorn Stevens & Martin Jung & Joachim Denzler & Nuno Carvalhais & Prabhat, 2019. "Deep learning and process understanding for data-driven Earth system science," Nature, Nature, vol. 566(7743), pages 195-204, February.
    7. Wadoux, Alexandre M.J.-C. & Heuvelink, Gerard B.M. & de Bruin, Sytze & Brus, Dick J., 2021. "Spatial cross-validation is not the right way to evaluate map accuracy," Ecological Modelling, Elsevier, vol. 457(C).
    8. Yu, Hao & Cooper, Arthur R. & Infante, Dana M., 2020. "Improving species distribution model predictive accuracy using species abundance: Application with boosted regression trees," Ecological Modelling, Elsevier, vol. 432(C).
    9. Hanna Meyer & Edzer Pebesma, 2022. "Machine learning-based global maps of ecological variables and the challenge of assessing them," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    10. Liu, Yongqi & Qin, Hui & Zhang, Zhendong & Pei, Shaoqian & Jiang, Zhiqiang & Feng, Zhongkai & Zhou, Jianzhong, 2020. "Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model," Applied Energy, Elsevier, vol. 260(C).
    11. Virginia Gewin, 2004. "Mapping opportunities," Nature, Nature, vol. 427(6972), pages 376-377, January.
    12. Lynn H. Kaack & Priya L. Donti & Emma Strubell & George Kamiya & Felix Creutzig & David Rolnick, 2022. "Aligning artificial intelligence with climate change mitigation," Nature Climate Change, Nature, vol. 12(6), pages 518-527, June.
    13. Pierre Ploton & Frédéric Mortier & Maxime Réjou-Méchain & Nicolas Barbier & Nicolas Picard & Vivien Rossi & Carsten Dormann & Guillaume Cornu & Gaëlle Viennois & Nicolas Bayol & Alexei Lyapustin & Syl, 2020. "Spatial validation reveals poor predictive performance of large-scale ecological mapping models," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    14. Schratz, Patrick & Muenchow, Jannes & Iturritxa, Eugenia & Richter, Jakob & Brenning, Alexander, 2019. "Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data," Ecological Modelling, Elsevier, vol. 406(C), pages 109-120.
    15. Nancy L. Harris & David A. Gibbs & Alessandro Baccini & Richard A. Birdsey & Sytze Bruin & Mary Farina & Lola Fatoyinbo & Matthew C. Hansen & Martin Herold & Richard A. Houghton & Peter V. Potapov & D, 2021. "Global maps of twenty-first century forest carbon fluxes," Nature Climate Change, Nature, vol. 11(3), pages 234-240, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tania L. Maxwell & Mark D. Spalding & Daniel A. Friess & Nicholas J. Murray & Kerrylee Rogers & Andre S. Rovai & Lindsey S. Smart & Lukas Weilguny & Maria Fernanda Adame & Janine B. Adams & William E., 2024. "Soil carbon in the world’s tidal marshes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Hanna Meyer & Edzer Pebesma, 2022. "Machine learning-based global maps of ecological variables and the challenge of assessing them," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    3. Benjamin Herfort & Sven Lautenbach & João Porto de Albuquerque & Jennings Anderson & Alexander Zipf, 2023. "A spatio-temporal analysis investigating completeness and inequalities of global urban building data in OpenStreetMap," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    5. Pede, Valerien O. & Florax, Raymond J.G.M. & Holt, Matthew T., 2009. "A Spatial Econometric Star Model With An Application To U.S. County Economic Growth, 1969–2003," Working papers 48117, Purdue University, Department of Agricultural Economics.
    6. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    7. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    8. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning," Applied Energy, Elsevier, vol. 300(C).
    9. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Marco Helbich & Wolfgang Brunauer & Eric Vaz & Peter Nijkamp, 2014. "Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria," Urban Studies, Urban Studies Journal Limited, vol. 51(2), pages 390-411, February.
    11. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    12. Licheng Liu & Wang Zhou & Kaiyu Guan & Bin Peng & Shaoming Xu & Jinyun Tang & Qing Zhu & Jessica Till & Xiaowei Jia & Chongya Jiang & Sheng Wang & Ziqi Qin & Hui Kong & Robert Grant & Symon Mezbahuddi, 2024. "Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Rozenstein, Offer & Fine, Lior & Malachy, Nitzan & Richard, Antoine & Pradalier, Cedric & Tanny, Josef, 2023. "Data-driven estimation of actual evapotranspiration to support irrigation management: Testing two novel methods based on an unoccupied aerial vehicle and an artificial neural network," Agricultural Water Management, Elsevier, vol. 283(C).
    14. Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
    15. Puertas, Rosa & Guaita-Martinez, José M. & Marti, Luisa, 2023. "Analysis of the impact of university policies on society's environmental perception," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    16. Jiang, Hou & Lu, Ning & Huang, Guanghui & Yao, Ling & Qin, Jun & Liu, Hengzi, 2020. "Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data," Applied Energy, Elsevier, vol. 270(C).
    17. Rafael González-Val, 2021. "The Probability Distribution of Worldwide Forest Areas," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    18. Bergkvist, John & Lagergren, Fredrik & Linderson, Maj-Lena Finnander & Miller, Paul & Lindeskog, Mats & Jönsson, Anna Maria, 2023. "Modelling managed forest ecosystems in Sweden: An evaluation from the stand to the regional scale," Ecological Modelling, Elsevier, vol. 477(C).
    19. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    20. Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong & Liu, Zhenkun, 2021. "Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection," Applied Energy, Elsevier, vol. 301(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55240-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.