IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21232-1.html
   My bibliography  Save this article

High-speed three-dimensional photoacoustic computed tomography for preclinical research and clinical translation

Author

Listed:
  • Li Lin

    (Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology)

  • Peng Hu

    (Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology)

  • Xin Tong

    (Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology)

  • Shuai Na

    (Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology)

  • Rui Cao

    (Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology)

  • Xiaoyun Yuan

    (Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology
    Tsinghua University, Haidian District)

  • David C. Garrett

    (Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology)

  • Junhui Shi

    (Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology
    China Artificial Intelligence Town)

  • Konstantin Maslov

    (Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology)

  • Lihong V. Wang

    (Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology)

Abstract

Photoacoustic computed tomography (PACT) has generated increasing interest for uses in preclinical research and clinical translation. However, the imaging depth, speed, and quality of existing PACT systems have previously limited the potential applications of this technology. To overcome these issues, we developed a three-dimensional photoacoustic computed tomography (3D-PACT) system that features large imaging depth, scalable field of view with isotropic spatial resolution, high imaging speed, and superior image quality. 3D-PACT allows for multipurpose imaging to reveal detailed angiographic information in biological tissues ranging from the rodent brain to the human breast. In the rat brain, we visualize whole brain vasculatures and hemodynamics. In the human breast, an in vivo imaging depth of 4 cm is achieved by scanning the breast within a single breath hold of 10 s. Here, we introduce the 3D-PACT system to provide a unique tool for preclinical research and an appealing prototype for clinical translation.

Suggested Citation

  • Li Lin & Peng Hu & Xin Tong & Shuai Na & Rui Cao & Xiaoyun Yuan & David C. Garrett & Junhui Shi & Konstantin Maslov & Lihong V. Wang, 2021. "High-speed three-dimensional photoacoustic computed tomography for preclinical research and clinical translation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21232-1
    DOI: 10.1038/s41467-021-21232-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21232-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21232-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shan Lei & Jing Zhang & Nicholas Thomas Blum & Meng Li & Dong-Yang Zhang & Weimin Yin & Feng Zhao & Jing Lin & Peng Huang, 2022. "In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Kristie Huda & Dylan J. Lawrence & Weylan Thompson & Sarah H. Lindsey & Carolyn L. Bayer, 2023. "In vivo noninvasive systemic myography of acute systemic vasoactivity in female pregnant mice," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Junjie Chen & Longqi Chen & Yinglong Wu & Yichang Fang & Fang Zeng & Shuizhu Wu & Yanli Zhao, 2021. "A H2O2-activatable nanoprobe for diagnosing interstitial cystitis and liver ischemia-reperfusion injury via multispectral optoacoustic tomography and NIR-II fluorescent imaging," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Yang Yang & Jinshu Huang & Wei Wei & Qin Zeng & Xipeng Li & Da Xing & Bo Zhou & Tao Zhang, 2022. "Switching the NIR upconversion of nanoparticles for the orthogonal activation of photoacoustic imaging and phototherapy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Yuwen Chen & Haoyu Yang & Yan Luo & Yijun Niu & Muzhou Yu & Shanjun Deng & Xuanhao Wang & Handi Deng & Haichao Chen & Lixia Gao & Xinjian Li & Pingyong Xu & Fudong Xue & Jing Miao & Song-Hai Shi & Yi , 2024. "Photoacoustic Tomography with Temporal Encoding Reconstruction (PATTERN) for cross-modal individual analysis of the whole brain," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21232-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.