IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v570y2019i7762d10.1038_s41586-019-1317-x.html
   My bibliography  Save this article

Observing crystal nucleation in four dimensions using atomic electron tomography

Author

Listed:
  • Jihan Zhou

    (University of California
    University of California)

  • Yongsoo Yang

    (University of California
    University of California
    Korea Advanced Institute of Science and Technology)

  • Yao Yang

    (University of California
    University of California)

  • Dennis S. Kim

    (University of California
    University of California)

  • Andrew Yuan

    (University of California
    University of California)

  • Xuezeng Tian

    (University of California
    University of California)

  • Colin Ophus

    (Lawrence Berkeley National Laboratory)

  • Fan Sun

    (University at Buffalo, the State University of New York)

  • Andreas K. Schmid

    (Lawrence Berkeley National Laboratory)

  • Michael Nathanson

    (University of Colorado at Boulder)

  • Hendrik Heinz

    (University of Colorado at Boulder)

  • Qi An

    (University of Nevada – Reno)

  • Hao Zeng

    (University at Buffalo, the State University of New York)

  • Peter Ercius

    (Lawrence Berkeley National Laboratory)

  • Jianwei Miao

    (University of California
    University of California)

Abstract

Nucleation plays a critical role in many physical and biological phenomena that range from crystallization, melting and evaporation to the formation of clouds and the initiation of neurodegenerative diseases1–3. However, nucleation is a challenging process to study experimentally, especially in its early stages, when several atoms or molecules start to form a new phase from a parent phase. A number of experimental and computational methods have been used to investigate nucleation processes4–17, but experimental determination of the three-dimensional atomic structure and the dynamics of early-stage nuclei has been unachievable. Here we use atomic electron tomography to study early-stage nucleation in four dimensions (that is, including time) at atomic resolution. Using FePt nanoparticles as a model system, we find that early-stage nuclei are irregularly shaped, each has a core of one to a few atoms with the maximum order parameter, and the order parameter gradient points from the core to the boundary of the nucleus. We capture the structure and dynamics of the same nuclei undergoing growth, fluctuation, dissolution, merging and/or division, which are regulated by the order parameter distribution and its gradient. These experimental observations are corroborated by molecular dynamics simulations of heterogeneous and homogeneous nucleation in liquid–solid phase transitions of Pt. Our experimental and molecular dynamics results indicate that a theory beyond classical nucleation theory1,2,18 is needed to describe early-stage nucleation at the atomic scale. We anticipate that the reported approach will open the door to the study of many fundamental problems in materials science, nanoscience, condensed matter physics and chemistry, such as phase transition, atomic diffusion, grain boundary dynamics, interface motion, defect dynamics and surface reconstruction with four-dimensional atomic resolution.

Suggested Citation

  • Jihan Zhou & Yongsoo Yang & Yao Yang & Dennis S. Kim & Andrew Yuan & Xuezeng Tian & Colin Ophus & Fan Sun & Andreas K. Schmid & Michael Nathanson & Hendrik Heinz & Qi An & Hao Zeng & Peter Ercius & Ji, 2019. "Observing crystal nucleation in four dimensions using atomic electron tomography," Nature, Nature, vol. 570(7762), pages 500-503, June.
  • Handle: RePEc:nat:nature:v:570:y:2019:i:7762:d:10.1038_s41586-019-1317-x
    DOI: 10.1038/s41586-019-1317-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1317-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1317-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philipp M. Pelz & Sinéad M. Griffin & Scott Stonemeyer & Derek Popple & Hannah DeVyldere & Peter Ercius & Alex Zettl & Mary C. Scott & Colin Ophus, 2023. "Solving complex nanostructures with ptychographic atomic electron tomography," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Linze Li & Bin Ouyang & Zhengyan Lun & Haoyan Huo & Dongchang Chen & Yuan Yue & Colin Ophus & Wei Tong & Guoying Chen & Gerbrand Ceder & Chongmin Wang, 2023. "Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Andreas Leitherer & Angelo Ziletti & Luca M. Ghiringhelli, 2021. "Robust recognition and exploratory analysis of crystal structures via Bayesian deep learning," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Chaehwa Jeong & Juhyeok Lee & Hyesung Jo & Jaewhan Oh & Hionsuck Baik & Kyoung-June Go & Junwoo Son & Si-Young Choi & Sergey Prosandeev & Laurent Bellaiche & Yongsoo Yang, 2024. "Revealing the three-dimensional arrangement of polar topology in nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Zezhou Li & Zhiheng Xie & Yao Zhang & Xilong Mu & Jisheng Xie & Hai-Jing Yin & Ya-Wen Zhang & Colin Ophus & Jihan Zhou, 2023. "Probing the atomically diffuse interfaces in Pd@Pt core-shell nanoparticles in three dimensions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Hyesung Jo & Dae Han Wi & Taegu Lee & Yongmin Kwon & Chaehwa Jeong & Juhyeok Lee & Hionsuck Baik & Alexander J. Pattison & Wolfgang Theis & Colin Ophus & Peter Ercius & Yea-Lee Lee & Seunghwa Ryu & Sa, 2022. "Direct strain correlations at the single-atom level in three-dimensional core-shell interface structures," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:570:y:2019:i:7762:d:10.1038_s41586-019-1317-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.