IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30703-y.html
   My bibliography  Save this article

Tailoring electron beams with high-frequency self-assembled magnetic charged particle micro optics

Author

Listed:
  • R. Huber

    (Leibniz IFW Dresden
    Chemnitz University of Technology)

  • F. Kern

    (Leibniz IFW Dresden, Helmholtzstraße 20)

  • D. D. Karnaushenko

    (Leibniz IFW Dresden
    Chemnitz University of Technology)

  • E. Eisner

    (Leibniz IFW Dresden)

  • P. Lepucki

    (Leibniz IFW Dresden, Helmholtzstraße 20)

  • A. Thampi

    (Leibniz IFW Dresden, Helmholtzstraße 20)

  • A. Mirhajivarzaneh

    (Leibniz IFW Dresden)

  • C. Becker

    (Leibniz IFW Dresden
    Chemnitz University of Technology)

  • T. Kang

    (Leibniz IFW Dresden)

  • S. Baunack

    (Leibniz IFW Dresden)

  • B. Büchner

    (Leibniz IFW Dresden, Helmholtzstraße 20
    Institute for Solid State and Materials Physics, TU Dresden)

  • D. Karnaushenko

    (Leibniz IFW Dresden
    Chemnitz University of Technology)

  • O. G. Schmidt

    (Leibniz IFW Dresden
    Chemnitz University of Technology
    Chemnitz University of Technology
    Nanophysics, Faculty of Physics, TU Dresden)

  • A. Lubk

    (Leibniz IFW Dresden, Helmholtzstraße 20
    Institute for Solid State and Materials Physics, TU Dresden)

Abstract

Tunable electromagnets and corresponding devices, such as magnetic lenses or stigmators, are the backbone of high-energy charged particle optical instruments, such as electron microscopes, because they provide higher optical power, stability, and lower aberrations compared to their electric counterparts. However, electromagnets are typically macroscopic (super-)conducting coils, which cannot generate swiftly changing magnetic fields, require active cooling, and are structurally bulky, making them unsuitable for fast beam manipulation, multibeam instruments, and miniaturized applications. Here, we present an on-chip microsized magnetic charged particle optics realized via a self-assembling micro-origami process. These micro-electromagnets can generate alternating magnetic fields of about ±100 mT up to a hundred MHz, supplying sufficiently large optical power for a large number of charged particle optics applications. That particular includes fast spatiotemporal electron beam modulation such as electron beam deflection, focusing, and wave front shaping as required for stroboscopic imaging.

Suggested Citation

  • R. Huber & F. Kern & D. D. Karnaushenko & E. Eisner & P. Lepucki & A. Thampi & A. Mirhajivarzaneh & C. Becker & T. Kang & S. Baunack & B. Büchner & D. Karnaushenko & O. G. Schmidt & A. Lubk, 2022. "Tailoring electron beams with high-frequency self-assembled magnetic charged particle micro optics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30703-y
    DOI: 10.1038/s41467-022-30703-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30703-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30703-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Duris & P. Musumeci & M. Babzien & M. Fedurin & K. Kusche & R. K. Li & J. Moody & I. Pogorelsky & M. Polyanskiy & J. B. Rosenzweig & Y. Sakai & C. Swinson & E. Threlkeld & O. Williams & V. Yakimenk, 2014. "High-quality electron beams from a helical inverse free-electron laser accelerator," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    2. Ondrej L. Krivanek & Tracy C. Lovejoy & Niklas Dellby & Toshihiro Aoki & R. W. Carpenter & Peter Rez & Emmanuel Soignard & Jiangtao Zhu & Philip E. Batson & Maureen J. Lagos & Ray F. Egerton & Peter A, 2014. "Vibrational spectroscopy in the electron microscope," Nature, Nature, vol. 514(7521), pages 209-212, October.
    3. Yeji Lee & Vineeth Kumar Bandari & Zhe Li & Mariana Medina-Sánchez & Manfred F. Maitz & Daniil Karnaushenko & Mikhail V. Tsurkan & Dmitriy D. Karnaushenko & Oliver G. Schmidt, 2021. "Nano-biosupercapacitors enable autarkic sensor operation in blood," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Maximilian Haider & Stephan Uhlemann & Eugen Schwan & Harald Rose & Bernd Kabius & Knut Urban, 1998. "Electron microscopy image enhanced," Nature, Nature, vol. 392(6678), pages 768-769, April.
    5. N. Shibata & Y. Kohno & A. Nakamura & S. Morishita & T. Seki & A. Kumamoto & H. Sawada & T. Matsumoto & S. D. Findlay & Y. Ikuhara, 2019. "Atomic resolution electron microscopy in a magnetic field free environment," Nature Communications, Nature, vol. 10(1), pages 1-5, December.
    6. J. Verbeeck & H. Tian & P. Schattschneider, 2010. "Production and application of electron vortex beams," Nature, Nature, vol. 467(7313), pages 301-304, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavel Fedorov & Ivan Soldatov & Volker Neu & Rudolf Schäfer & Oliver G. Schmidt & Daniil Karnaushenko, 2024. "Self-assembly of Co/Pt stripes with current-induced domain wall motion towards 3D racetrack devices," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Baokun Liang & Yingying Zhang & Christopher Leist & Zhaowei Ou & Miroslav Položij & Zhiyong Wang & David Mücke & Renhao Dong & Zhikun Zheng & Thomas Heine & Xinliang Feng & Ute Kaiser & Haoyuan Qi, 2022. "Optimal acceleration voltage for near-atomic resolution imaging of layer-stacked 2D polymer thin films," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Ahmed H. Dorrah & Noah A. Rubin & Michele Tamagnone & Aun Zaidi & Federico Capasso, 2021. "Structuring total angular momentum of light along the propagation direction with polarization-controlled meta-optics," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Yves Auad & Eduardo J. C. Dias & Marcel Tencé & Jean-Denis Blazit & Xiaoyan Li & Luiz Fernando Zagonel & Odile Stéphan & Luiz H. G. Tizei & F. Javier García de Abajo & Mathieu Kociak, 2023. "μeV electron spectromicroscopy using free-space light," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    5. Tom Lee & Ji Qi & Chaitanya A. Gadre & Huaixun Huyan & Shu-Ting Ko & Yunxing Zuo & Chaojie Du & Jie Li & Toshihiro Aoki & Ruqian Wu & Jian Luo & Shyue Ping Ong & Xiaoqing Pan, 2023. "Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Jiale Feng & Zhipeng Feng & Liang Xu & Haibing Meng & Xiao Chen & Mengmeng Ma & Lei Wang & Bin Song & Xuan Tang & Sheng Dai & Fei Wei & Tao Cheng & Boyuan Shen, 2024. "Real-space imaging for discovering a rotated node structure in metal-organic framework," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Zhe Cheng & Ruiyang Li & Xingxu Yan & Glenn Jernigan & Jingjing Shi & Michael E. Liao & Nicholas J. Hines & Chaitanya A. Gadre & Juan Carlos Idrobo & Eungkyu Lee & Karl D. Hobart & Mark S. Goorsky & X, 2021. "Experimental observation of localized interfacial phonon modes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    8. Haolin Lin & Yixuan Liao & Guohua Liu & Jianbin Ren & Zhen Li & Zhenqiang Chen & Boris A. Malomed & Shenhe Fu, 2024. "Optical vortex-antivortex crystallization in free space," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Takehito Seki & Toshihiro Futazuka & Nobusato Morishige & Ryo Matsubara & Yuichi Ikuhara & Naoya Shibata, 2023. "Incommensurate grain-boundary atomic structure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Ruochen Shi & Qize Li & Xiaofeng Xu & Bo Han & Ruixue Zhu & Fachen Liu & Ruishi Qi & Xiaowen Zhang & Jinlong Du & Ji Chen & Dapeng Yu & Xuetao Zhu & Jiandong Guo & Peng Gao, 2024. "Atomic-scale observation of localized phonons at FeSe/SrTiO3 interface," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Haokun Luo & Yunxuan Wei & Georgios G. Pyrialakos & Mercedeh Khajavikhan & Demetrios N. Christodoulides, 2024. "Guiding charged particles in vacuum via Lagrange points," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Ning Li & Ruochen Shi & Yifei Li & Ruishi Qi & Fachen Liu & Xiaowen Zhang & Zhetong Liu & Yuehui Li & Xiangdong Guo & Kaihui Liu & Ying Jiang & Xin-Zheng Li & Ji Chen & Lei Liu & En-Ge Wang & Peng Gao, 2023. "Phonon transition across an isotopic interface," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30703-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.