IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54701-4.html
   My bibliography  Save this article

Quantum quench dynamics of geometrically frustrated Ising models

Author

Listed:
  • Ammar Ali

    (Purdue University)

  • Hanjing Xu

    (Purdue University)

  • William Bernoudy

    (D-Wave Quantum Inc.)

  • Alberto Nocera

    (University of British Columbia
    University of British Columbia)

  • Andrew D. King

    (D-Wave Quantum Inc.)

  • Arnab Banerjee

    (Purdue University)

Abstract

Geometric frustration in two-dimensional Ising models allows for a wealth of exotic universal behavior, both Ising and non-Ising, in the presence of quantum fluctuations. In particular, the triangular antiferromagnet and Villain model in a transverse field can be understood through distinct XY pseudospins, but have qualitatively similar phase diagrams including a quantum phase transition in the (2+1)-dimensional XY universality class. While the quantum dynamics of modestly-sized systems can be simulated classically using tensor-based methods, these methods become infeasible for larger lattices. Here we perform both classical and quantum simulations of these dynamics, where our quantum simulator is a superconducting quantum annealer. Our observations on the triangular lattice suggest that the dominant quench dynamics are not described by the quantum Kibble-Zurek scaling of the quantum phase transition, but rather a faster coarsening dynamics in an effective two-dimensional XY model in the ordered phase. Similarly, on the Villain model, the scaling exponent does not match the Kibble-Zurek expectation. These results demonstrate the ability of quantum annealers to perform coherent quantum dynamics simulations that are hard to classically scale beyond small systems, and open the avenue to predictive simulations of the dynamics of Ising magnetic materials on quantum simulators.

Suggested Citation

  • Ammar Ali & Hanjing Xu & William Bernoudy & Alberto Nocera & Andrew D. King & Arnab Banerjee, 2024. "Quantum quench dynamics of geometrically frustrated Ising models," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54701-4
    DOI: 10.1038/s41467-024-54701-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54701-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54701-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sepehr Ebadi & Tout T. Wang & Harry Levine & Alexander Keesling & Giulia Semeghini & Ahmed Omran & Dolev Bluvstein & Rhine Samajdar & Hannes Pichler & Wen Wei Ho & Soonwon Choi & Subir Sachdev & Marku, 2021. "Quantum phases of matter on a 256-atom programmable quantum simulator," Nature, Nature, vol. 595(7866), pages 227-232, July.
    2. Andrew D. King & Juan Carrasquilla & Jack Raymond & Isil Ozfidan & Evgeny Andriyash & Andrew Berkley & Mauricio Reis & Trevor Lanting & Richard Harris & Fabio Altomare & Kelly Boothby & Paul I. Bunyk , 2018. "Observation of topological phenomena in a programmable lattice of 1,800 qubits," Nature, Nature, vol. 560(7719), pages 456-460, August.
    3. Alexander Keesling & Ahmed Omran & Harry Levine & Hannes Bernien & Hannes Pichler & Soonwon Choi & Rhine Samajdar & Sylvain Schwartz & Pietro Silvi & Subir Sachdev & Peter Zoller & Manuel Endres & Mar, 2019. "Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator," Nature, Nature, vol. 568(7751), pages 207-211, April.
    4. Zoran Hadzibabic & Peter Krüger & Marc Cheneau & Baptiste Battelier & Jean Dalibard, 2006. "Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas," Nature, Nature, vol. 441(7097), pages 1118-1121, June.
    5. Han Li & Yuan Da Liao & Bin-Bin Chen & Xu-Tao Zeng & Xian-Lei Sheng & Yang Qi & Zi Yang Meng & Wei Li, 2020. "Kosterlitz-Thouless melting of magnetic order in the triangular quantum Ising material TmMgGaO4," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    6. Andrew D. King & Jack Raymond & Trevor Lanting & Sergei V. Isakov & Masoud Mohseni & Gabriel Poulin-Lamarre & Sara Ejtemaee & William Bernoudy & Isil Ozfidan & Anatoly Yu. Smirnov & Mauricio Reis & Fa, 2021. "Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Zhang & Sergio H. Cantú & Fangli Liu & Alexei Bylinskii & Boris Braverman & Florian Huber & Jesse Amato-Grill & Alexander Lukin & Nathan Gemelke & Alexander Keesling & Sheng-Tao Wang & Yannick Meu, 2025. "Probing quantum floating phases in Rydberg atom arrays," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    2. Matthew J. O’Rourke & Garnet Kin-Lic Chan, 2023. "Entanglement in the quantum phases of an unfrustrated Rydberg atom array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Katrina Barnes & Peter Battaglino & Benjamin J. Bloom & Kayleigh Cassella & Robin Coxe & Nicole Crisosto & Jonathan P. King & Stanimir S. Kondov & Krish Kotru & Stuart C. Larsen & Joseph Lauigan & Bri, 2022. "Assembly and coherent control of a register of nuclear spin qubits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Yuqian Zhao & Zhaohua Ma & Zhangzhen He & Haijun Liao & Yan-Cheng Wang & Junfeng Wang & Yuesheng Li, 2024. "Quantum annealing of a frustrated magnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Shi, Zeyun & Badshah, Fazal & Qin, Lu & Zhou, Yuan & Huang, Haibo & Zhang, Yong-Chang, 2023. "Spatially modulated control of pattern formation in a general nonlocal nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    6. Hu, Jie-Ru & Zhang, Zuo-Yuan & Liu, Jin-Ming, 2024. "Implementation of three-qubit Deutsch-Jozsa algorithm with pendular states of polar molecules by optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    7. Luheng Zhao & Michael Dao Kang Lee & Mohammad Mujahid Aliyu & Huanqian Loh, 2023. "Floquet-tailored Rydberg interactions," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Giacomo Bighin & Tilman Enss & Nicolò Defenu, 2024. "Universal scaling in real dimension," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Shankar G. Menon & Noah Glachman & Matteo Pompili & Alan Dibos & Hannes Bernien, 2024. "An integrated atom array-nanophotonic chip platform with background-free imaging," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. S. K. Kanungo & J. D. Whalen & Y. Lu & M. Yuan & S. Dasgupta & F. B. Dunning & K. R. A. Hazzard & T. C. Killian, 2022. "Realizing topological edge states with Rydberg-atom synthetic dimensions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Bang Liu & Li-Hua Zhang & Qi-Feng Wang & Yu Ma & Tian-Yu Han & Jun Zhang & Zheng-Yuan Zhang & Shi-Yao Shao & Qing Li & Han-Chao Chen & Bao-Sen Shi & Dong-Sheng Ding, 2024. "Higher-order and fractional discrete time crystals in Floquet-driven Rydberg atoms," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Han Li & Enze Lv & Ning Xi & Yuan Gao & Yang Qi & Wei Li & Gang Su, 2024. "Magnetocaloric effect of topological excitations in Kitaev magnets," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Daniel Stilck França & Liubov A. Markovich & V. V. Dobrovitski & Albert H. Werner & Johannes Borregaard, 2024. "Efficient and robust estimation of many-qubit Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Alejandro Lopez-Bezanilla & Jack Raymond & Kelly Boothby & Juan Carrasquilla & Cristiano Nisoli & Andrew D. King, 2023. "Kagome qubit ice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Liang Xiang & Jiachen Chen & Zitian Zhu & Zixuan Song & Zehang Bao & Xuhao Zhu & Feitong Jin & Ke Wang & Shibo Xu & Yiren Zou & Hekang Li & Zhen Wang & Chao Song & Alexander Yue & Justine Partridge & , 2024. "Enhanced quantum state transfer by circumventing quantum chaotic behavior," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Ian Christen & Thomas Propson & Madison Sutula & Hamed Sattari & Gregory Choong & Christopher Panuski & Alexander Melville & Justin Mallek & Cole Brabec & Scott Hamilton & P. Benjamin Dixon & Adrian J, 2025. "An integrated photonic engine for programmable atomic control," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    18. Yue Wu & Shimon Kolkowitz & Shruti Puri & Jeff D. Thompson, 2022. "Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Dominik Hangleiter & Ingo Roth & Jonáš Fuksa & Jens Eisert & Pedram Roushan, 2024. "Robustly learning the Hamiltonian dynamics of a superconducting quantum processor," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Y.-H. Hou & Y.-J. Yi & Y.-K. Wu & Y.-Y. Chen & L. Zhang & Y. Wang & Y.-L. Xu & C. Zhang & Q.-X. Mei & H.-X. Yang & J.-Y. Ma & S.-A. Guo & J. Ye & B.-X. Qi & Z.-C. Zhou & P.-Y. Hou & L.-M. Duan, 2024. "Individually addressed entangling gates in a two-dimensional ion crystal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54701-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.