IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28550-y.html
   My bibliography  Save this article

Realizing topological edge states with Rydberg-atom synthetic dimensions

Author

Listed:
  • S. K. Kanungo

    (Rice University
    Rice University)

  • J. D. Whalen

    (Rice University
    Rice University)

  • Y. Lu

    (Rice University
    Rice University)

  • M. Yuan

    (Rice University
    Rice University
    University of Science and Technology of China
    University of Chicago)

  • S. Dasgupta

    (Rice University
    Rice University)

  • F. B. Dunning

    (Rice University)

  • K. R. A. Hazzard

    (Rice University
    Rice University)

  • T. C. Killian

    (Rice University
    Rice University)

Abstract

A discrete degree of freedom can be engineered to match the Hamiltonian of particles moving in a real-space lattice potential. Such synthetic dimensions are powerful tools for quantum simulation because of the control they offer and the ability to create configurations difficult to access in real space. Here, in an ultracold 84Sr atom, we demonstrate a synthetic-dimension based on Rydberg levels coupled with millimeter waves. Tunneling amplitudes between synthetic lattice sites and on-site potentials are set by the millimeter-wave amplitudes and detunings respectively. Alternating weak and strong tunneling in a one-dimensional configuration realizes the single-particle Su-Schrieffer-Heeger (SSH) Hamiltonian, a paradigmatic model of topological matter. Band structure is probed through optical excitation from the ground state to Rydberg levels, revealing symmetry-protected topological edge states at zero energy. Edge-state energies are robust to perturbations of tunneling-rates that preserve chiral symmetry, but can be shifted by the introduction of on-site potentials.

Suggested Citation

  • S. K. Kanungo & J. D. Whalen & Y. Lu & M. Yuan & S. Dasgupta & F. B. Dunning & K. R. A. Hazzard & T. C. Killian, 2022. "Realizing topological edge states with Rydberg-atom synthetic dimensions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28550-y
    DOI: 10.1038/s41467-022-28550-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28550-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28550-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sepehr Ebadi & Tout T. Wang & Harry Levine & Alexander Keesling & Giulia Semeghini & Ahmed Omran & Dolev Bluvstein & Rhine Samajdar & Hannes Pichler & Wen Wei Ho & Soonwon Choi & Subir Sachdev & Marku, 2021. "Quantum phases of matter on a 256-atom programmable quantum simulator," Nature, Nature, vol. 595(7866), pages 227-232, July.
    2. Eric J. Meier & Fangzhao Alex An & Bryce Gadway, 2016. "Observation of the topological soliton state in the Su–Schrieffer–Heeger model," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    3. Fangzhao Alex An & Eric J. Meier & Bryce Gadway, 2017. "Diffusive and arrested transport of atoms under tailored disorder," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    4. S. Kolkowitz & S. L. Bromley & T. Bothwell & M. L. Wall & G. E. Marti & A. P. Koller & X. Zhang & A. M. Rey & J. Ye, 2017. "Spin–orbit-coupled fermions in an optical lattice clock," Nature, Nature, vol. 542(7639), pages 66-70, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Chen & Chenxi Huang & Ivan Velkovsky & Kaden R. A. Hazzard & Jacob P. Covey & Bryce Gadway, 2024. "Strongly interacting Rydberg atoms in synthetic dimensions with a magnetic flux," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuqing Li & Huiying Du & Yunfei Wang & Junjun Liang & Liantuan Xiao & Wei Yi & Jie Ma & Suotang Jia, 2023. "Observation of frustrated chiral dynamics in an interacting triangular flux ladder," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Hu, Jie-Ru & Zhang, Zuo-Yuan & Liu, Jin-Ming, 2024. "Implementation of three-qubit Deutsch-Jozsa algorithm with pendular states of polar molecules by optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    3. Luheng Zhao & Michael Dao Kang Lee & Mohammad Mujahid Aliyu & Huanqian Loh, 2023. "Floquet-tailored Rydberg interactions," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Sifan You & Cuiju Yu & Yixuan Gao & Xuechao Li & Guyue Peng & Kaifeng Niu & Jiahao Xi & Chaojie Xu & Shixuan Du & Xingxing Li & Jinlong Yang & Lifeng Chi, 2024. "Quantifying the conductivity of a single polyene chain by lifting with an STM tip," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Shankar G. Menon & Noah Glachman & Matteo Pompili & Alan Dibos & Hannes Bernien, 2024. "An integrated atom array-nanophotonic chip platform with background-free imaging," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Tang, Qian & Zhang, Yiqi & Kartashov, Yaroslav V. & Li, Yongdong & Konotop, Vladimir V., 2022. "Vector valley Hall edge solitons in superhoneycomb lattices," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    8. Daniel Stilck França & Liubov A. Markovich & V. V. Dobrovitski & Albert H. Werner & Johannes Borregaard, 2024. "Efficient and robust estimation of many-qubit Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Matthew J. O’Rourke & Garnet Kin-Lic Chan, 2023. "Entanglement in the quantum phases of an unfrustrated Rydberg atom array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Liang Xiang & Jiachen Chen & Zitian Zhu & Zixuan Song & Zehang Bao & Xuhao Zhu & Feitong Jin & Ke Wang & Shibo Xu & Yiren Zou & Hekang Li & Zhen Wang & Chao Song & Alexander Yue & Justine Partridge & , 2024. "Enhanced quantum state transfer by circumventing quantum chaotic behavior," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Wang, Huanyu & Liu, Wuming, 2023. "Broken bulk-boundary correspondence in the non-Hermitian superconductive chain with the identity determinant of transfer matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    12. Yue Wu & Shimon Kolkowitz & Shruti Puri & Jeff D. Thompson, 2022. "Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Dominik Hangleiter & Ingo Roth & Jonáš Fuksa & Jens Eisert & Pedram Roushan, 2024. "Robustly learning the Hamiltonian dynamics of a superconducting quantum processor," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Byoung-Uk Sohn & Yue-Xin Huang & Ju Won Choi & George F. R. Chen & Doris K. T. Ng & Shengyuan A. Yang & Dawn T. H. Tan, 2022. "A topological nonlinear parametric amplifier," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Katrina Barnes & Peter Battaglino & Benjamin J. Bloom & Kayleigh Cassella & Robin Coxe & Nicole Crisosto & Jonathan P. King & Stanimir S. Kondov & Krish Kotru & Stuart C. Larsen & Joseph Lauigan & Bri, 2022. "Assembly and coherent control of a register of nuclear spin qubits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Y.-H. Hou & Y.-J. Yi & Y.-K. Wu & Y.-Y. Chen & L. Zhang & Y. Wang & Y.-L. Xu & C. Zhang & Q.-X. Mei & H.-X. Yang & J.-Y. Ma & S.-A. Guo & J. Ye & B.-X. Qi & Z.-C. Zhou & P.-Y. Hou & L.-M. Duan, 2024. "Individually addressed entangling gates in a two-dimensional ion crystal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Spencer D. Fallek & Vikram S. Sandhu & Ryan A. McGill & John M. Gray & Holly N. Tinkey & Craig R. Clark & Kenton R. Brown, 2024. "Rapid exchange cooling with trapped ions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Tao Chen & Chenxi Huang & Ivan Velkovsky & Kaden R. A. Hazzard & Jacob P. Covey & Bryce Gadway, 2024. "Strongly interacting Rydberg atoms in synthetic dimensions with a magnetic flux," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28550-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.