IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-55947-2.html
   My bibliography  Save this article

Probing quantum floating phases in Rydberg atom arrays

Author

Listed:
  • Jin Zhang

    (University of Iowa
    Chongqing University
    Chongqing University)

  • Sergio H. Cantú

    (QuEra Computing Inc)

  • Fangli Liu

    (QuEra Computing Inc)

  • Alexei Bylinskii

    (QuEra Computing Inc)

  • Boris Braverman

    (QuEra Computing Inc)

  • Florian Huber

    (QuEra Computing Inc)

  • Jesse Amato-Grill

    (QuEra Computing Inc)

  • Alexander Lukin

    (QuEra Computing Inc)

  • Nathan Gemelke

    (QuEra Computing Inc)

  • Alexander Keesling

    (QuEra Computing Inc)

  • Sheng-Tao Wang

    (QuEra Computing Inc)

  • Yannick Meurice

    (University of Iowa)

  • Shan-Wen Tsai

    (University of California)

Abstract

The floating phase, a critical incommensurate phase, has been theoretically predicted as a potential intermediate phase between crystalline ordered and disordered phases. In this study, we investigate the different quantum phases that arise in ladder arrays comprising up to 92 neutral-atom qubits and experimentally observe the emergence of the quantum floating phase. We analyze the site-resolved Rydberg state densities and the distribution of state occurrences. The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase, which subsequently proliferate and give rise to the floating phase with incommensurate quasi-long-range order. By analyzing the Fourier spectra of the Rydberg density-density correlations, we observe clear signatures of the incommensurate wave order of the floating phase. Furthermore, as the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice. Our work motivates future studies to further explore the nature of commensurate-incommensurate phase transitions and their non-equilibrium physics.

Suggested Citation

  • Jin Zhang & Sergio H. Cantú & Fangli Liu & Alexei Bylinskii & Boris Braverman & Florian Huber & Jesse Amato-Grill & Alexander Lukin & Nathan Gemelke & Alexander Keesling & Sheng-Tao Wang & Yannick Meu, 2025. "Probing quantum floating phases in Rydberg atom arrays," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55947-2
    DOI: 10.1038/s41467-025-55947-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-55947-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-55947-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sepehr Ebadi & Tout T. Wang & Harry Levine & Alexander Keesling & Giulia Semeghini & Ahmed Omran & Dolev Bluvstein & Rhine Samajdar & Hannes Pichler & Wen Wei Ho & Soonwon Choi & Subir Sachdev & Marku, 2021. "Quantum phases of matter on a 256-atom programmable quantum simulator," Nature, Nature, vol. 595(7866), pages 227-232, July.
    2. Natalia Chepiga & Frédéric Mila, 2021. "Kibble-Zurek exponent and chiral transition of the period-4 phase of Rydberg chains," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Alexander Keesling & Ahmed Omran & Harry Levine & Hannes Bernien & Hannes Pichler & Soonwon Choi & Rhine Samajdar & Sylvain Schwartz & Pietro Silvi & Subir Sachdev & Peter Zoller & Manuel Endres & Mar, 2019. "Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator," Nature, Nature, vol. 568(7751), pages 207-211, April.
    4. Henning Labuhn & Daniel Barredo & Sylvain Ravets & Sylvain de Léséleuc & Tommaso Macrì & Thierry Lahaye & Antoine Browaeys, 2016. "Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models," Nature, Nature, vol. 534(7609), pages 667-670, June.
    5. Pascal Scholl & Michael Schuler & Hannah J. Williams & Alexander A. Eberharter & Daniel Barredo & Kai-Niklas Schymik & Vincent Lienhard & Louis-Paul Henry & Thomas C. Lang & Thierry Lahaye & Andreas M, 2021. "Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms," Nature, Nature, vol. 595(7866), pages 233-238, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katrina Barnes & Peter Battaglino & Benjamin J. Bloom & Kayleigh Cassella & Robin Coxe & Nicole Crisosto & Jonathan P. King & Stanimir S. Kondov & Krish Kotru & Stuart C. Larsen & Joseph Lauigan & Bri, 2022. "Assembly and coherent control of a register of nuclear spin qubits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Matthew J. O’Rourke & Garnet Kin-Lic Chan, 2023. "Entanglement in the quantum phases of an unfrustrated Rydberg atom array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Luheng Zhao & Michael Dao Kang Lee & Mohammad Mujahid Aliyu & Huanqian Loh, 2023. "Floquet-tailored Rydberg interactions," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Shankar G. Menon & Noah Glachman & Matteo Pompili & Alan Dibos & Hannes Bernien, 2024. "An integrated atom array-nanophotonic chip platform with background-free imaging," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Daniel Stilck França & Liubov A. Markovich & V. V. Dobrovitski & Albert H. Werner & Johannes Borregaard, 2024. "Efficient and robust estimation of many-qubit Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Yue Wu & Shimon Kolkowitz & Shruti Puri & Jeff D. Thompson, 2022. "Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Ammar Ali & Hanjing Xu & William Bernoudy & Alberto Nocera & Andrew D. King & Arnab Banerjee, 2024. "Quantum quench dynamics of geometrically frustrated Ising models," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Hu, Jie-Ru & Zhang, Zuo-Yuan & Liu, Jin-Ming, 2024. "Implementation of three-qubit Deutsch-Jozsa algorithm with pendular states of polar molecules by optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    9. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Giacomo Bighin & Tilman Enss & Nicolò Defenu, 2024. "Universal scaling in real dimension," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. S. K. Kanungo & J. D. Whalen & Y. Lu & M. Yuan & S. Dasgupta & F. B. Dunning & K. R. A. Hazzard & T. C. Killian, 2022. "Realizing topological edge states with Rydberg-atom synthetic dimensions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Bang Liu & Li-Hua Zhang & Qi-Feng Wang & Yu Ma & Tian-Yu Han & Jun Zhang & Zheng-Yuan Zhang & Shi-Yao Shao & Qing Li & Han-Chao Chen & Bao-Sen Shi & Dong-Sheng Ding, 2024. "Higher-order and fractional discrete time crystals in Floquet-driven Rydberg atoms," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Stuart J. Masson & Ana Asenjo-Garcia, 2022. "Universality of Dicke superradiance in arrays of quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. Liang Xiang & Jiachen Chen & Zitian Zhu & Zixuan Song & Zehang Bao & Xuhao Zhu & Feitong Jin & Ke Wang & Shibo Xu & Yiren Zou & Hekang Li & Zhen Wang & Chao Song & Alexander Yue & Justine Partridge & , 2024. "Enhanced quantum state transfer by circumventing quantum chaotic behavior," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Ian Christen & Thomas Propson & Madison Sutula & Hamed Sattari & Gregory Choong & Christopher Panuski & Alexander Melville & Justin Mallek & Cole Brabec & Scott Hamilton & P. Benjamin Dixon & Adrian J, 2025. "An integrated photonic engine for programmable atomic control," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    16. Dominik Hangleiter & Ingo Roth & Jonáš Fuksa & Jens Eisert & Pedram Roushan, 2024. "Robustly learning the Hamiltonian dynamics of a superconducting quantum processor," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Y.-H. Hou & Y.-J. Yi & Y.-K. Wu & Y.-Y. Chen & L. Zhang & Y. Wang & Y.-L. Xu & C. Zhang & Q.-X. Mei & H.-X. Yang & J.-Y. Ma & S.-A. Guo & J. Ye & B.-X. Qi & Z.-C. Zhou & P.-Y. Hou & L.-M. Duan, 2024. "Individually addressed entangling gates in a two-dimensional ion crystal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Spencer D. Fallek & Vikram S. Sandhu & Ryan A. McGill & John M. Gray & Holly N. Tinkey & Craig R. Clark & Kenton R. Brown, 2024. "Rapid exchange cooling with trapped ions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Yuqian Zhao & Zhaohua Ma & Zhangzhen He & Haijun Liao & Yan-Cheng Wang & Junfeng Wang & Yuesheng Li, 2024. "Quantum annealing of a frustrated magnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55947-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.