IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37756-7.html
   My bibliography  Save this article

Unlocking the general relationship between energy and entanglement spectra via the wormhole effect

Author

Listed:
  • Zheng Yan

    (The University of Hong Kong
    Westlake University
    Institute of Natural Sciences, Westlake Institute for Advanced Study)

  • Zi Yang Meng

    (The University of Hong Kong)

Abstract

Based on the path integral formulation of the reduced density matrix, we develop a scheme to overcome the exponential growth of computational complexity in reliably extracting low-lying entanglement spectrum from quantum Monte Carlo simulations. We test the method on the Heisenberg spin ladder with long entangled boundary between two chains and the results support the Li and Haldane’s conjecture on entanglement spectrum of topological phase. We then explain the conjecture via the wormhole effect in the path integral and show that it can be further generalized for systems beyond gapped topological phases. Our further simulation results on the bilayer antiferromagnetic Heisenberg model with 2D entangled boundary across the (2 + 1)D O(3) quantum phase transition clearly demonstrate the correctness of the wormhole picture. Finally, we state that since the wormhole effect amplifies the bulk energy gap by a factor of β, the relative strength of that with respect to the edge energy gap will determine the behavior of low-lying entanglement spectrum of the system.

Suggested Citation

  • Zheng Yan & Zi Yang Meng, 2023. "Unlocking the general relationship between energy and entanglement spectra via the wormhole effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37756-7
    DOI: 10.1038/s41467-023-37756-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37756-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37756-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bin-Bin Chen & Yuan Da Liao & Ziyu Chen & Oskar Vafek & Jian Kang & Wei Li & Zi Yang Meng, 2021. "Realization of topological Mott insulator in a twisted bilayer graphene lattice model," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Han Li & Yuan Da Liao & Bin-Bin Chen & Xu-Tao Zeng & Xian-Lei Sheng & Yang Qi & Zi Yang Meng & Wei Li, 2020. "Kosterlitz-Thouless melting of magnetic order in the triangular quantum Ising material TmMgGaO4," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Weilun Jiang & Yuzhi Liu & Avraham Klein & Yuxuan Wang & Kai Sun & Andrey V. Chubukov & Zi Yang Meng, 2022. "Monte Carlo study of the pseudogap and superconductivity emerging from quantum magnetic fluctuations," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanyu Wang & Wei Xu & Zeyong Wei & Yiyuan Wang & Zhanshan Wang & Xinbin Cheng & Qinghua Guo & Jinhui Shi & Zhihong Zhu & Biao Yang, 2024. "Twisted photonic Weyl meta-crystals and aperiodic Fermi arc scattering," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Yuqian Zhao & Zhaohua Ma & Zhangzhen He & Haijun Liao & Yan-Cheng Wang & Junfeng Wang & Yuesheng Li, 2024. "Quantum annealing of a frustrated magnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37756-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.