IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53964-1.html
   My bibliography  Save this article

Spin-photon entanglement with direct photon emission in the telecom C-band

Author

Listed:
  • P. Laccotripes

    (Toshiba Europe Limited
    University of Cambridge)

  • T. Müller

    (Toshiba Europe Limited)

  • R. M. Stevenson

    (Toshiba Europe Limited)

  • J. Skiba-Szymanska

    (Toshiba Europe Limited)

  • D. A. Ritchie

    (University of Cambridge)

  • A. J. Shields

    (Toshiba Europe Limited)

Abstract

Quantum networks, relying on the distribution of quantum entanglement between remote locations, have the potential to transform quantum computation and secure long-distance quantum communication. However, a fundamental ingredient for fibre-based implementations of such networks, namely entanglement between a single spin and a photon directly emitted at telecom wavelengths, has been unattainable so far. Here, we use a negatively charged exciton in an InAs/InP quantum dot to implement an optically active spin qubit taking advantage of the lowest-loss transmission window, the telecom C-band. We investigate the coherent interactions of the spin-qubit system under resonant excitation, demonstrating high fidelity spin initialisation and coherent control using picosecond pulses. We further use these tools to measure the coherence of a single, undisturbed electron spin in our system. Finally, we demonstrate spin-photon entanglement in a solid-state system with entanglement fidelity F = 80.07 ± 2.9%, more than 10 standard deviations above the classical limit.

Suggested Citation

  • P. Laccotripes & T. Müller & R. M. Stevenson & J. Skiba-Szymanska & D. A. Ritchie & A. J. Shields, 2024. "Spin-photon entanglement with direct photon emission in the telecom C-band," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53964-1
    DOI: 10.1038/s41467-024-53964-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53964-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53964-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Stockill & C. Le Gall & C. Matthiesen & L. Huthmacher & E. Clarke & M. Hugues & M. Atatüre, 2016. "Quantum dot spin coherence governed by a strained nuclear environment," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    2. Koji Azuma & Kiyoshi Tamaki & Hoi-Kwong Lo, 2015. "All-photonic quantum repeaters," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    3. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. David Press & Thaddeus D. Ladd & Bingyang Zhang & Yoshihisa Yamamoto, 2008. "Complete quantum control of a single quantum dot spin using ultrafast optical pulses," Nature, Nature, vol. 456(7219), pages 218-221, November.
    5. H. Bernien & B. Hensen & W. Pfaff & G. Koolstra & M. S. Blok & L. Robledo & T. H. Taminiau & M. Markham & D. J. Twitchen & L. Childress & R. Hanson, 2013. "Heralded entanglement between solid-state qubits separated by three metres," Nature, Nature, vol. 497(7447), pages 86-90, May.
    6. Andreas V. Kuhlmann & Jonathan H. Prechtel & Julien Houel & Arne Ludwig & Dirk Reuter & Andreas D. Wieck & Richard J. Warburton, 2015. "Transform-limited single photons from a single quantum dot," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    7. Kristiaan De Greve & Leo Yu & Peter L. McMahon & Jason S. Pelc & Chandra M. Natarajan & Na Young Kim & Eisuke Abe & Sebastian Maier & Christian Schneider & Martin Kamp & Sven Höfling & Robert H. Hadfi, 2012. "Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength," Nature, Nature, vol. 491(7424), pages 421-425, November.
    8. W. B. Gao & P. Fallahi & E. Togan & J. Miguel-Sanchez & A. Imamoglu, 2012. "Observation of entanglement between a quantum dot spin and a single photon," Nature, Nature, vol. 491(7424), pages 426-430, November.
    9. L. Wells & T. Müller & R. M. Stevenson & J. Skiba-Szymanska & D. A. Ritchie & A. J. Shields, 2023. "Coherent light scattering from a telecom C-band quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. E. Togan & Y. Chu & A. S. Trifonov & L. Jiang & J. Maze & L. Childress & M. V. G. Dutt & A. S. Sørensen & P. R. Hemmer & A. S. Zibrov & M. D. Lukin, 2010. "Quantum entanglement between an optical photon and a solid-state spin qubit," Nature, Nature, vol. 466(7307), pages 730-734, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. L. Wells & T. Müller & R. M. Stevenson & J. Skiba-Szymanska & D. A. Ritchie & A. J. Shields, 2023. "Coherent light scattering from a telecom C-band quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Clemens Spinnler & Liang Zhai & Giang N. Nguyen & Julian Ritzmann & Andreas D. Wieck & Arne Ludwig & Alisa Javadi & Doris E. Reiter & Paweł Machnikowski & Richard J. Warburton & Matthias C. Löbl, 2021. "Optically driving the radiative Auger transition," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    4. Likai Yang & Sihao Wang & Mohan Shen & Jiacheng Xie & Hong X. Tang, 2023. "Controlling single rare earth ion emission in an electro-optical nanocavity," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    5. Haibo Hu & Yu Zhou & Ailun Yi & Tongyuan Bao & Chengying Liu & Qi Luo & Yao Zhang & Zi Wang & Qiang Li & Dawei Lu & Zhengtong Liu & Shumin Xiao & Xin Ou & Qinghai Song, 2024. "Room-temperature waveguide integrated quantum register in a semiconductor photonic platform," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Adam Johnston & Ulises Felix-Rendon & Yu-En Wong & Songtao Chen, 2024. "Cavity-coupled telecom atomic source in silicon," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Hanfeng Wang & Matthew E. Trusheim & Laura Kim & Hamza Raniwala & Dirk R. Englund, 2023. "Field programmable spin arrays for scalable quantum repeaters," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Durga Bhaktavatsala Rao Dasari & Sen Yang & Arnab Chakrabarti & Amit Finkler & Gershon Kurizki & Jörg Wrachtrup, 2022. "Anti-Zeno purification of spin baths by quantum probe measurements," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Longlong Yang & Yu Yuan & Bowen Fu & Jingnan Yang & Danjie Dai & Shushu Shi & Sai Yan & Rui Zhu & Xu Han & Hancong Li & Zhanchun Zuo & Can Wang & Yuan Huang & Kuijuan Jin & Qihuang Gong & Xiulai Xu, 2023. "Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Nikhil Mathur & Arunabh Mukherjee & Xingyu Gao & Jialun Luo & Brendan A. McCullian & Tongcang Li & A. Nick Vamivakas & Gregory D. Fuchs, 2022. "Excited-state spin-resonance spectroscopy of V $${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ B − defect centers in hexagonal boron nitride," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Haozhe Yang & Eva Schmoranzerová & Pyunghwa Jang & Jayshankar Nath & Thomas Guillet & Isabelle Joumard & Stéphane Auffret & Matthieu Jamet & Petr Němec & Gilles Gaudin & Ioan-Mihai Miron, 2022. "Helicity dependent photoresistance measurement vs. beam-shift thermal gradient," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Song Li & Gergő Thiering & Péter Udvarhelyi & Viktor Ivády & Adam Gali, 2022. "Carbon defect qubit in two-dimensional WS2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Chiao-Hsuan Wang & Fangxin Li & Liang Jiang, 2022. "Quantum capacities of transducers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Nai-Jie Guo & Song Li & Wei Liu & Yuan-Ze Yang & Xiao-Dong Zeng & Shang Yu & Yu Meng & Zhi-Peng Li & Zhao-An Wang & Lin-Ke Xie & Rong-Chun Ge & Jun-Feng Wang & Qiang Li & Jin-Shi Xu & Yi-Tao Wang & Ji, 2023. "Coherent control of an ultrabright single spin in hexagonal boron nitride at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Shuai Shi & Biao Xu & Kuan Zhang & Gen-Sheng Ye & De-Sheng Xiang & Yubao Liu & Jingzhi Wang & Daiqin Su & Lin Li, 2022. "High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    16. Sheng Zhang & Jixuan Shi & Yibo Liang & Yuedong Sun & Yukai Wu & Luming Duan & Yunfei Pu, 2024. "Fast delivery of heralded atom-photon quantum correlation over 12 km fiber through multiplexing enhancement," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    17. Pei Zeng & Hongyi Zhou & Weijie Wu & Xiongfeng Ma, 2022. "Mode-pairing quantum key distribution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Xinghan Guo & Mouzhe Xie & Anchita Addhya & Avery Linder & Uri Zvi & Stella Wang & Xiaofei Yu & Tanvi D. Deshmukh & Yuzi Liu & Ian N. Hammock & Zixi Li & Clayton T. DeVault & Amy Butcher & Aaron P. Es, 2024. "Direct-bonded diamond membranes for heterogeneous quantum and electronic technologies," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Paweł Holewa & Daniel A. Vajner & Emilia Zięba-Ostój & Maja Wasiluk & Benedek Gaál & Aurimas Sakanas & Marek Burakowski & Paweł Mrowiński & Bartosz Krajnik & Meng Xiong & Kresten Yvind & Niels Gregers, 2024. "High-throughput quantum photonic devices emitting indistinguishable photons in the telecom C-band," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Francesco Chiti & Romano Fantacci & Roberto Picchi & Laura Pierucci, 2021. "Towards the Quantum Internet: Satellite Control Plane Architectures and Protocol Design," Future Internet, MDPI, vol. 13(8), pages 1-13, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53964-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.