IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12745.html
   My bibliography  Save this article

Quantum dot spin coherence governed by a strained nuclear environment

Author

Listed:
  • R. Stockill

    (Cavendish Laboratory, University of Cambridge)

  • C. Le Gall

    (Cavendish Laboratory, University of Cambridge)

  • C. Matthiesen

    (Cavendish Laboratory, University of Cambridge
    Present address: Department of Physics, University of California, Berkeley, California 94720, USA)

  • L. Huthmacher

    (Cavendish Laboratory, University of Cambridge)

  • E. Clarke

    (EPSRC National Centre for III-V Technologies, University of Sheffield)

  • M. Hugues

    (CNRS-CRHEA, rue Bernard Grégory)

  • M. Atatüre

    (Cavendish Laboratory, University of Cambridge)

Abstract

The interaction between a confined electron and the nuclei of an optically active quantum dot provides a uniquely rich manifestation of the central spin problem. Coherent qubit control combines with an ultrafast spin–photon interface to make these confined spins attractive candidates for quantum optical networks. Reaching the full potential of spin coherence has been hindered by the lack of knowledge of the key irreversible environment dynamics. Through all-optical Hahn echo decoupling we now recover the intrinsic coherence time set by the interaction with the inhomogeneously strained nuclear bath. The high-frequency nuclear dynamics are directly imprinted on the electron spin coherence, resulting in a dramatic jump of coherence times from few tens of nanoseconds to the microsecond regime between 2 and 3 T magnetic field and an exponential decay of coherence at high fields. These results reveal spin coherence can be improved by applying large magnetic fields and reducing strain inhomogeneity.

Suggested Citation

  • R. Stockill & C. Le Gall & C. Matthiesen & L. Huthmacher & E. Clarke & M. Hugues & M. Atatüre, 2016. "Quantum dot spin coherence governed by a strained nuclear environment," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12745
    DOI: 10.1038/ncomms12745
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12745
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yijian Meng & Ming Lai Chan & Rasmus B. Nielsen & Martin H. Appel & Zhe Liu & Ying Wang & Nikolai Bart & Andreas D. Wieck & Arne Ludwig & Leonardo Midolo & Alexey Tiranov & Anders S. Sørensen & Peter , 2024. "Deterministic photon source of genuine three-qubit entanglement," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.