IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53385-0.html
   My bibliography  Save this article

Ligand engineering enhances (photo) electrocatalytic activity and stability of zeolitic imidazolate frameworks via in-situ surface reconstruction

Author

Listed:
  • Zheao Huang

    (Technische Universität Wien)

  • Zhouzhou Wang

    (College of Physical Science and Technology, Central China Normal University)

  • Hannah Rabl

    (Technische Universität Wien)

  • Shaghayegh Naghdi

    (Technische Universität Wien)

  • Qiancheng Zhou

    (College of Physical Science and Technology, Central China Normal University)

  • Sabine Schwarz

    (Technische Universität Wien)

  • Dogukan Hazar Apaydin

    (Technische Universität Wien)

  • Ying Yu

    (College of Physical Science and Technology, Central China Normal University)

  • Dominik Eder

    (Technische Universität Wien)

Abstract

The current limitations in utilizing metal-organic frameworks for (photo)electrochemical applications stem from their diminished electrochemical stability. In our study, we illustrate a method to bolster the activity and stability of (photo)electrocatalytically active metal-organic frameworks through ligand engineering. We synthesize four distinct mixed-ligand versions of zeolitic imidazolate framework-67, and conduct a comprehensive investigation into the structural evolution and self-reconstruction during electrocatalytic oxygen evolution reactions. In contrast to the conventional single-ligand ZIF, where the framework undergoes a complete transformation into CoOOH via a stepwise oxidation, the ligand-engineered zeolitic imidazolate frameworks manage to preserve the fundamental framework structure by in-situ forming a protective cobalt (oxy)hydroxide layer on the surface. This surface reconstruction facilitates both conductivity and catalytic activity by one order of magnitude and considerably enhances the (photo)electrochemical stability. This work highlights the vital role of ligand engineering for designing advanced and stable metal-organic frameworks for photo- and electrocatalysis.

Suggested Citation

  • Zheao Huang & Zhouzhou Wang & Hannah Rabl & Shaghayegh Naghdi & Qiancheng Zhou & Sabine Schwarz & Dogukan Hazar Apaydin & Ying Yu & Dominik Eder, 2024. "Ligand engineering enhances (photo) electrocatalytic activity and stability of zeolitic imidazolate frameworks via in-situ surface reconstruction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53385-0
    DOI: 10.1038/s41467-024-53385-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53385-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53385-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ziqian Xue & Kang Liu & Qinglin Liu & Yinle Li & Manrong Li & Cheng-Yong Su & Naoki Ogiwara & Hirokazu Kobayashi & Hiroshi Kitagawa & Min Liu & Guangqin Li, 2019. "Missing-linker metal-organic frameworks for oxygen evolution reaction," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. Shanlin Li & Ruguang Ma & Jingcong Hu & Zichuang Li & Lijia Liu & Xunlu Wang & Yue Lu & George E. Sterbinsky & Shuhu Liu & Lei Zheng & Jie Liu & Danmin Liu & Jiacheng Wang, 2022. "Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Shenlong Zhao & Chunhui Tan & Chun-Ting He & Pengfei An & Feng Xie & Shuai Jiang & Yanfei Zhu & Kuang-Hsu Wu & Binwei Zhang & Haijing Li & Jing Zhang & Yuan Chen & Shaoqin Liu & Juncai Dong & Zhiyong , 2020. "Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction," Nature Energy, Nature, vol. 5(11), pages 881-890, November.
    4. Fanpeng Cheng & Xianyun Peng & Lingzi Hu & Bin Yang & Zhongjian Li & Chung-Li Dong & Jeng-Lung Chen & Liang-Ching Hsu & Lecheng Lei & Qiang Zheng & Ming Qiu & Liming Dai & Yang Hou, 2022. "Accelerated water activation and stabilized metal-organic framework via constructing triangular active-regions for ampere-level current density hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Shaghayegh Naghdi & Alexey Cherevan & Ariane Giesriegl & Rémy Guillet-Nicolas & Santu Biswas & Tushar Gupta & Jia Wang & Thomas Haunold & Bernhard Christian Bayer & Günther Rupprechter & Maytal Caspar, 2022. "Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam F. Sapnik & Irene Bechis & Alice M. Bumstead & Timothy Johnson & Philip A. Chater & David A. Keen & Kim E. Jelfs & Thomas D. Bennett, 2022. "Multivariate analysis of disorder in metal–organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Lin Chen & Chang Yu & Xuedan Song & Junting Dong & Jiawei Mu & Jieshan Qiu, 2024. "Integrated electrochemical and chemical system for ampere-level production of terephthalic acid alternatives and hydrogen," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Zilong Wu & Xiangyu Liu & Haijing Li & Zhiyi Sun & Maosheng Cao & Zezhou Li & Chaohe Fang & Jihan Zhou & Chuanbao Cao & Juncai Dong & Shenlong Zhao & Zhuo Chen, 2023. "A semiconductor-electrocatalyst nano interface constructed for successive photoelectrochemical water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Qiqi Mao & Xu Mu & Wenxin Wang & Kai Deng & Hongjie Yu & Ziqiang Wang & You Xu & Liang Wang & Hongjing Wang, 2023. "Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Xiang Liu & Yu-Quan Zhu & Jing Li & Ye Wang & Qiujin Shi & An-Zhen Li & Kaiyue Ji & Xi Wang & Xikang Zhao & Jinyu Zheng & Haohong Duan, 2024. "Electrosynthesis of adipic acid with high faradaic efficiency within a wide potential window," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Xintong Gao & Xiaowan Bai & Pengtang Wang & Yan Jiao & Kenneth Davey & Yao Zheng & Shi-Zhang Qiao, 2023. "Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Zuyun He & Jun Zhang & Zhiheng Gong & Hang Lei & Deng Zhou & Nian Zhang & Wenjie Mai & Shijun Zhao & Yan Chen, 2022. "Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Yingying Zou & Chao Liu & Chaoqi Zhang & Ling Yuan & Jiaxin Li & Tong Bao & Guangfeng Wei & Jin Zou & Chengzhong Yu, 2023. "Epitaxial growth of metal-organic framework nanosheets into single-crystalline orthogonal arrays," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Yiming Zhu & Malte Klingenhof & Chenlong Gao & Toshinari Koketsu & Gregor Weiser & Yecan Pi & Shangheng Liu & Lijun Sui & Jingrong Hou & Jiayi Li & Haomin Jiang & Limin Xu & Wei-Hsiang Huang & Chih-We, 2024. "Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Daying Zheng & Kaijie Liu & Zeshu Zhang & Qi Fu & Mengyao Bian & Xinyu Han & Xin Shen & Xiaohui Chen & Haijiao Xie & Xiao Wang & Xiangguang Yang & Yibo Zhang & Shuyan Song, 2024. "Essential features of weak current for excellent enhancement of NOx reduction over monoatomic V-based catalyst," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Xingkun Wang & Liangliang Xu & Cheng Li & Canhui Zhang & Hanxu Yao & Ren Xu & Peixin Cui & Xusheng Zheng & Meng Gu & Jinwoo Lee & Heqing Jiang & Minghua Huang, 2023. "Developing a class of dual atom materials for multifunctional catalytic reactions," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Wenlong Xu & Yuwei Zhang & Junjun Wang & Yixiu Xu & Li Bian & Qiang Ju & Yuemin Wang & Zhenlan Fang, 2022. "Defects engineering simultaneously enhances activity and recyclability of MOFs in selective hydrogenation of biomass," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Jiachen Li & Yuqiang Ma & Cong Zhang & Chi Zhang & Huijun Ma & Zhaoqi Guo & Ning Liu & Ming Xu & Haixia Ma & Jieshan Qiu, 2023. "Green electrosynthesis of 3,3’-diamino-4,4’-azofurazan energetic materials coupled with energy-efficient hydrogen production over Pt-based catalysts," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Nattapol Ma & Ryo Ohtani & Hung M. Le & Søren S. Sørensen & Ryuta Ishikawa & Satoshi Kawata & Sareeya Bureekaew & Soracha Kosasang & Yoshiyuki Kawazoe & Koji Ohara & Morten M. Smedskjaer & Satoshi Hor, 2022. "Exploration of glassy state in Prussian blue analogues," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Fanpeng Cheng & Xianyun Peng & Lingzi Hu & Bin Yang & Zhongjian Li & Chung-Li Dong & Jeng-Lung Chen & Liang-Ching Hsu & Lecheng Lei & Qiang Zheng & Ming Qiu & Liming Dai & Yang Hou, 2022. "Accelerated water activation and stabilized metal-organic framework via constructing triangular active-regions for ampere-level current density hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53385-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.